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Abstract

Conventional coronary artery bypass surgery requires invasive sternotomy and the

use of a cardiopulmonary bypass, which leads to long recovery period and has high

infectious potential. Totally endoscopic coronary artery bypass (TECAB) surgery

based on image guided robotic surgical approaches have been developed to allow the

clinicians to conduct the bypass surgery off-pump with only three pin holes incisions

in the chest cavity, through which two robotic arms and one stereo endoscopic camera

are inserted. However, the restricted field of view of the stereo endoscopic images leads

to possible vessel misidentification and coronary artery mis-localization. This results

in 20-30% conversion rates from TECAB surgery to the conventional approach.

We have constructed patient-specific 3D + time coronary artery and left ventricle

motion models from preoperative 4D Computed Tomography Angiography (CTA)

scans. Through temporally and spatially aligning this model with the intraoperative

endoscopic views of the patient’s beating heart, this work assists the surgeon to identify

and locate the correct coronaries during the TECAB precedures. Thus this work has

the prospect of reducing the conversion rate from TECAB to conventional coronary

bypass procedures.

This thesis mainly focus on designing segmentation and motion tracking methods

of the coronary arteries in order to build pre-operative patient-specific motion mod-

els. Various vessel centreline extraction and lumen segmentation algorithms are pre-

sented, including intensity based approaches, geometric model matching method and

morphology-based method. A probabilistic atlas of the coronary arteries is formed

from a group of subjects to facilitate the vascular segmentation and registration pro-

cedures. Non-rigid registration framework based on a free-form deformation model

and multi-level multi-channel large deformation diffeomorphic metric mapping are

proposed to track the coronary motion. The methods are applied to 4D CTA images

acquired from various groups of patients and quantitatively evaluated.
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Chapter 1

Introduction

“The heart . . . is the beginning of life; the sun of the microcosm . . . for it is the

heart by whose virtue and pulse the blood is moved, perfected, made apt to nourish,

and is preserved from corruption and coagulation; it is the household divinity which,

discharging its function, nourishes, cherishes, quickens the whole body, and is indeed

the foundation of life, the source of all action.”

—— by William Harvey, 1628 [88].

1.1 Motivation

Conventional cardiac surgery is one of the most invasive and traumatic forms of open-

chest surgery, because it requires exposure of the heart and its vessels through median

sternotomy. In contrast to this, minimally invasive heart surgery for coronary artery

diseases includes several approaches for bypassing critically blocked arteries. These

approaches allow access to the heart through small incisions without stopping the

heart, or separating the breastbone and ribcage, or putting the patient on a heart-lung

machine during the surgery. Three different chest wall incisions for cardiac surgery

are illustrated in Figure 1.1. Figure 1.2 shows a small left anterior thoracotomy for

anastomosis without using a cardiopulmonary bypass.

Patients who have minimally invasive procedures instead of conventional open heart

surgery have a lower risk of complications associated with heart-lung machines such as

stroke, lung problems, kidney problems, and problems with mental clarity and memory.

In addition to reduced complications, by eliminating the need for a painful sternotomy,

the greatest benefit for the patient is to recover and resume normal activities more

quickly than those patients who endure the conventional cardiac surgery [56, 186].

For the year ending March 2005, 35,986 heart surgeries were performed in UK.
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Figure 1.1: Chest wall incisions for a heart surgery [100]. Left: median sternotomy
incision. Middle: minimally invasive approach with partial upper sternotomy. Right:
minimally invasive approach with small right thoracotomy incision.

Figure 1.2: A small left anterior thoracotomy used to construct limited anastomosis
without the use of cardiopulmonary bypass (CPB) [78].

These surgeries include coronary bypass, repair or replacement of heart valves and

many other types of operations, such as repairing holes in the heart, dealing with

scars on the heart and diseases of the aorta (the main artery from the heart). On

average, over half of the operations are coronary bypass graft surgery, a third are

aortic valve replacement operations and the rest are a mixture of combined operations

(e.g., a coronary bypass combined with a valve operation) and other operations [7].

Currently, there are three main types of minimally invasive coronary artery bypass

procedures: minimally invasive direct coronary bypass (MIDCAB), off-pump coronary

artery bypass (OPCAB) and robotic assisted coronary artery bypass (RACAB).

Robotic assisted heart surgery [157], also referred to as closed-chest heart surgery,

is a type of minimally invasive heart surgery performed by a cardiac surgeon with the

support of robotic surgery system (for example, the da Vinci robotic surgical system

shown in Figure 1.3). The surgeon uses a specially designed computer console to

control surgical instruments on thin robotic arms. First, three small incisions or ports

are made in the spaces between the ribs. The surgical instruments and one stereo
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camera attached to the robotic arms are then inserted through these ports. After

the surgeon’s fingers grasp the master controls below the display, the system then

seamlessly translates the surgeon’s hand, wrist and finger movements into precise,

real-time movements of surgical instruments inside the patient during the operation.

Figure 1.3: Da Vinci surgical system [101].

The surgeon sits at a computer console and looks through two displays (one for

each eye) that show images from the two tiny cameras placed inside the patient. Foot

pedals provide precise camera control, so the surgeon can instantly zoom in and out to

change the surgical view. The surgeon’s hands control the movement and placement

of the endoscopic instruments. The robotic arm and wrist movements mimic those of

the surgeon, yet are possibly more precise than the surgeon’s natural hand and wrist

movements, because of the motion scaling and tremor reduction by the instruments.

Robotically-assisted surgical techniques can be used in many heart operations,

including mitral valve repair and replacement, tricuspid valve repair and replacement,

coronary artery bypass graft, removal of cardiac tumors and so on. But performing

surgery on a beating heart through “pinholes” is technically more difficult than working

on a heart that has been stopped with the help of the heart-lung machine due to the

movement of heart and the lack of visibility of clinically relevant anatomical structures.

In addition, the stress on the heart during the procedure may lead to more heart muscle

damage, lower blood pressure, irregular heart beat and, potentially, brain injury if

blood flow to the brain is reduced for too long during surgery. In some cases, it is

necessary to convert to conventional heart surgery methods on an emergency basis.

1.1.1 Coronary Heart Disease (CHD)

It is widely acknowledged that coronary heart disease is the leading cause of death

and disability worldwide. CHD is responsible for approximately 7.2 millions of deaths

worldwide in 2004. It accounts for 12.2% of all deaths worldwide. Nearly 82 percent

of these deaths occur in low and middle-income countries [39].
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As the most common cause for CHD, coronary artery disease (CAD) occurs due

to the failure of the blood circulation to supply adequate oxygen and nutrition to

cardiac tissues. CAD is typically caused by the excessive accumulation of atheroma-

tous plaques and fatty deposits within certain regions of the arteries that restrict the

blood flow. Lifestyle changes, medicines, and medical procedures (for example, percu-

taneous transluminal coronary angioplasty and bypass surgery) can effectively prevent

or treat CAD in most people. When treating this disease by performing coronary

bypass surgery, arteries or veins grafted from the patient’s body are used to bypass

the blockages and restore the supply to the heart muscle. Figure 1.4 illustrates the

anatomy of coronary arteries together with the ventricles. Figure 1.5 shows a segment

of normal artery with normal blood flow and also one narrowing of the artery with the

corresponding cross-sectional view.

Figure 1.4: Coronary arteries [91]

Using image-guided robotic surgical systems, totally endoscopic coronary artery

bypass (TECAB) surgery techniques have been developed to allow clinicians to perform

bypass surgery off-pump with three pin-hole incisions in the chest cavity, through

which two robotic arms and one stereo endoscopic camera are inserted. However,

20-30% conversion rates from TECAB surgery to the conventional invasive surgical

approach [60, 158] have been reported due to the vessel misidentification and mis-

localization caused by the restricted field of view of the stereo endoscopic images.

The goal of our work is to construct a patient-specific 4D coronary artery mo-

tion model from preoperative cardiac Computed Tomography Angiography (CTA)

sequences. By temporally and spatially aligning this model with intraoperative endo-

scopic views of the patient’s beating heart captured by the endoscopic cameras in the
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da Vinci surgical system, this work potentially can be used to assist the surgeon to

identify and locate the correct coronaries during the TECAB procedures [67, 68].

Normal artery 

Narrowing  
of artery 

Normal blood flow 

Abnormal blood flow Plaque 

Artery wall 

Cross section 

Narrowed 
artery Plaque 

Figure 1.5: A normal artery with normal blood flow (top) and an artery with plaque
buildup (bottom) [143].

1.1.2 Image Guidance for Cardiac Surgery

Under the increasing pressure to lower healthcare costs and improve outcomes, mini-

mally invasive methods are replacing traditional surgical procedures as quickly as the

technology allows. Many treatments that would previously have required open surgery

can already be carried out using endoscopes, catheters and other instruments. Such

minimally invasive approaches reduce trauma, thus minimizing damage to healthy tis-

sue and requiring less pain medication. This shortens recovery times and is better

for the patient. Many minimally invasive procedures can even be carried out in an

outpatient setting. Generally, they are also less costly for the hospital, which is always

important in delivering the best possible healthcare on ever tightening budgets. There

are, however, challenges: During open surgery, surgeons can see where the organs are

and what they are doing. For minimally invasive interventions, interventional special-

ists need other information sources to be able to view their actions. To provide image

guidance for cardiac surgery, pre-operative medical images and intra-operative images

are acquired.
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1.1.2.1 Pre-operative Imaging

To analyse the pre-operative images and build motion models prior to the opera-

tion would help the surgeon to better visualise the structure of interest, understand

the intra-operative images and plan the procedure. The most popular pre-operative

scans for cardiac interventions are echocardiography [159], magnetic resonance imaging

(MRI) [213] and computed tomography (CT).

Echocardiography, also known as cardiac ultrasound, traditionally uses standard

ultrasound techniques to image two-dimensional slices of the heart. The latest ultra-

sound systems now employ 3D real-time imaging. Echocardiography is one of the most

widely diagnostic tests for cardiovascular diseases. It can provide rich information to

allow the assessment of cardiac valve areas and function, any abnormal communica-

tions between the left and right side of the heart, any leaking of blood through the

valves, and calculation of cardiac output as well as ejection fraction. By assessing the

motion of the heart wall, echocardiography can help detect the presence and assess

the severity of coronary artery disease, as well as help determine whether any chest

pain is related to heart disease. Echocardiography can also help detect hypertrophic

cardiomyopathy. The biggest advantage to echocardiography is that it is non-invasive,

easy to acquire and has no known risks or side effects.

MRI uses powerful magnetic fields that cause hydrogen nuclei within the body’s

water molecules to resonate, emitting radio-frequency energy. The spin of the atomic

nuclei can be considered as a magnetic vector, causing the protons to behave like

a magnet. Even tiny differences in tissue change the rates at which this energy is

emitted. The image acquisition involves an initial sequence of exciting pulses and the

recording of the emitted signal. The amplitude of the signal is used to generate maps

showing the anatomy of the body. MRI provides remarkably clear and detailed pictures

of internal organs and soft tissues with high contrast. The procedure is valuable in

diagnosing a broad range of conditions in all parts of the body, including heart disease,

cancer and joint and musculoskeletal disorders. Compared with X-ray, CT and other

imaging techniques, MRI does not require exposure to radiation or the introduction

of radioisotopes to the body, and it is suitable for routine screening. Even without

the use of contrast material, MRI often shows sufficient detail of the heart to be

valuable in diagnosis and treatment planning. When contrast is used, MRI contrast

material is less likely to produce an allergic reaction than the iodine-based materials

used for conventional X-rays and CT scanning. Nevertheless MRI should be avoided

for patients with metal implants, because the strong magnetic field can affect the

implants.

Recent advances in MRI allow a wide range of cardiovascular applications. Car-

diovascular MRI is becoming very important in the initial diagnosis and subsequent
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treatment of heart disease. It can help clinicians to look closely at the structures and

function of the heart and major vessels quickly and thoroughly, without the risks asso-

ciated with traditional, more invasive procedures. Using MRI, clinicians can examine

the size and thickness of the chambers of the heart, and determine the extent of dam-

age caused by a heart attack or progressive heart disease. After a heart attack, for

example, a MRI examination can help the cardiologist understand how well the heart

is contracting and expanding, whether the flow of blood is blocked in any chamber

or major vessel, whether the heart muscles are damaged or whether the lining of the

heart is swelling. Cardiovascular MRI can also help to detect the buildup of plaque

and blockages in the blood vessels, making it an invaluable tool for detecting and

evaluating coronary artery disease.

CT is a medical imaging method that is based on the tomographic reconstruction

procedure. A 3D image of an object can be reconstructed from a series of 2D X-

ray images taken around a single axis of rotation. For more details on CT image

reconstruction, we refer to [108] by Kak et al..

Since the introduction of the first clinical system by Hounsfield in 1972, five gener-

ations of scanners have been produced, with different tube-detector configuration and

scanning motion. Table 1.1 summarises the five generations of CT scanner technology.

Fishman et al. provide more details of CT scanner technology in [64].

Table 1.1: Different generations of CT scanner technology [64]

Generation Configuration
Number of

Beam
Minimum

detectors scan time

1st translate-rotate 1 ∼ 2 pencil thin 2.5 min

2nd translate-rotate 3 ∼ 52 narrow fan 10 sec

3rd rotate-rotate 256 ∼ 1000 wide fan 0.5 sec

4th rotate-fixed 600 ∼ 4800 wide fan 1 sec

5th electron beam 1284
wide fan

33ms
electron beam

The new development of CT scanners means a promising future for CT imaging

used in cardiovascular disease diagnosis. The speed advantages of 64-slice CT have

rapidly established it as the minimum standard for newly installed CT scanners in-

tended for cardiac scanning. Dual Source CT scanners with dual X-ray tube and dual

array of 64-slice detectors were introduced by Siemens in 2005. Dual source CT allow

higher temporal resolution by acquiring a full CT slice in only a quarter of a rotation,

thus reducing motion blurring at high heart rates and potentially allowing for shorter

breath-hold time. This is particularly useful for ill patients who have difficulty holding

21



their breath or who are unable to take heart-rate lowering medication.

With the advent of subsecond rotation speeds combined with multi-slice CT (up to

320-slice by 2009 [225]), high resolution and high speed CT scanning can be obtained

at the same time, allowing excellent imaging of the cardiovascular system. CT also

allows for the study of multiple components of cardiac parameters within one exam.

Images with an even higher temporal resolution can be formed using retrospective

ECG gating. In this technique, the patient heart is imaged multiple times during one

heart-beat while an ECG trace is recorded. The ECG signal is then used to correlate

the CT data with their corresponding phases of cardiac contraction. A sequence of

3D CT images can then be reconstructed according to this information. By doing so,

individual frames in a cardiac CT sequence have a better temporal resolution than the

shortest tube rotation time.

Despite its advantages, CT scanning is not a substitute for other imaging techniques

in all cardiovascular conditions. Relatively poor tissue contrast in CT images when

compared to MRI can be a problem, despite the use of contrast agents. Unlike an

echocardiogram machine, the CT scanners cannot be brought to the bedside of an

acutely ill patient. Although CT scans account for only 4% of X-ray examinations,

they contribute to more than 20% of the radiation dose to the population by medical

X-rays. Typically, the dose for CT chest examination is around 400 times of that of a

single X-ray examination [230].

The remarkable advantage of MRI and CT modalities is the high-resolution volu-

metric imaging of the cardiac anatomy in tomographic planes of any desired position.

Both MRI and CT imaging allow not only the acquisition of high-resolution 3D car-

diac images that describe the cardiac anatomy but also the acquisition of 4D image

sequences that describe both the cardiac anatomy and function. The high tissue

contrast of MRI images enables the assessment and measurement of different cardiac

structures, facilitating a comprehensive evaluation of cardiac health. However, cardiac

CT is more frequently used in acquiring 4D cardiac images due to its fast scanning

speed that leads to the minimal disturbance from respiratory motion.

In summary, echocardiography, CT and MRI techniques all are very useful for

imaging structures such as cardiac ventricles and aorta. Due to the relatively longer

acquisition time that is required for MRI, CT and echocardiography are more fre-

quently used to monitor the motion of those structures. Unlike CT, both standard

MRI and echocardiography could not image small structures like coronaries up to the

level of visibility required for the diagnosis or treatment procedures. In section 1.2, we

will present the enhanced imaging techniques specially focusing on coronary artery.
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1.1.2.2 Intra-operative Imaging

During the operation, stereo endoscopic videos can be captured by the inserted cam-

eras to provide intra-operative views while using the da Vinci System for the TECAB

surgery. Figure 1.6 shows a pair of static stereo images from the endoscopic videos

acquired at 50 frames per second during the TECAB operation.

Figure 1.6: Endoscopic stereo views (left and right) of the coronary arteries.

(a) (b)

Figure 1.7: (a): A manually delimited region of interest for tracking diaphragm motion
in live fluoroscopic X-ray images [113]; (b): 3D echocardiography evaluation of the
mitral valve [229].

Fluoroscopy and echocardiography have also been long used in the medical com-

munity to provide intra-operative image guidance for the cardiac surgery. As a type of

medical imaging, fluoroscopy shows a continuous X-ray image on a monitor, like an X-

ray movie. It is used for the diagnosis of disease or treatment for patients by displaying
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the movement of objects of interest (e.g. organs, instrument or contrast agent). Dur-

ing a fluoroscopy procedure, an X-ray beam is passed through the body. The image is

transmitted to a monitor so that the structure of interest and its motion can be seen

in detail. Fluoroscopic images can be taken intra-operatively to assist cardiac surgery

or interventions, e.g., [177, 65, 113]. In many surgical procedures, echocardiography is

also employed during the operation to provide guidance [229, 16, 95, 114]. Figure 1.7

shows examples of fluoroscopic X-ray and echocardiography images.

1.2 Coronary Artery Imaging

Following the discussion of image guidance for cardiac surgery from the pre-operative

and intra-operative perspectives, in this section we introduce the medical imaging

techniques that can be used to image the coronary arteries, as listed in Table 1.2. We

focus on the image modalities closely related to our work, e.g, MRA, CTA and others.

Table 1.2: Advances in medical imaging techniques related to coronaries

1895 Chest X-ray

1896 Fluoroscopy

1931, 1937 Angiography

1958 Selective coronary arteriography

1972 Computed tomography

1979, 1990 Ultrafast computed tomography

1984 Magnetic resonance imaging of cardiovascular system [92]

1990 Electron beam tomography for coronary calcium

1990s Single-photon emission computed tomography

1991 Optical Coherence Tomography [97]

1994 Intracoronary ultrasound [165]

2004 64-slice CT scanning (Siemens Somatom Sensation 64-slice CT system)

1.2.1 Biplane X-ray Angiography

A biplane X-ray system employs two X-ray tubes and two X-ray detectors for obtaining

images from the subject in two different planes respectively. Subsequently, biplane

coronary angiograms allow visualisation of the coronary morphology from two different

directions. Figure 1.8 illustrates Philips Allura Xper FD10/10 as an example of biplane

X-ray systems.
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Figure 1.8: Biplanar cardiovascular X-ray system: Philips Allura Xper FD10/10
(www.healthcare.philips.com).

Biplane X-ray angiograms deliver twice the information with a single contrast in-

jection, compared with monoplane X-ray angiograms. Figure 1.9 shows a pair of

biplane X-ray angiograms of the coronary arteries from one subject. The state-of-art

biplane X-ray systems are flexible enough to operate both pre-operatively and intra-

operatively. However, the major drawback of biplane angiography is being invasive

and also lacking of 3D information. A 3D reconstruction of the vascular structures

becomes essential after acquiring the two 2D X-ray angiograms.

Figure 1.9: Biplane X-ray angiograms of coronaries (left: view 1; right: view 2)

1.2.2 Magnetic Resonance Angiography

Magnetic resonance angiography is a variant of MRI specially for imaging vascula-

ture structures. MRA is often used for the arteries in the brain, neck, abdomen and
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legs where less motion is at present. When it is used for imaging coronary arteries,

navigator echo-based respiratory gating technique is used to eliminate the respiratory

motion [213]. Also, to ensure complete freezing of cardiac motion, data acquisition is

generally limited to the coronary artery rest period (mainly found during mid-diastole).

Figure 1.10: MRA images (transversal, coronal and sagittal views). Red arrows point
to the right coronary artery; Yellow arrow shows the left coronary artery.

Figure 1.10 shows contrast enhanced MRA images from one subject in three dif-

ferent views. To acquire this type of MRA scan, a MRI contrast agent is injected into

a vein. Images are then acquired when the contrast medium is passing through the

arteries.

1.2.3 Computed Tomography Angiography

Developments in multi-detector CT and reconstruction techniques allow for fast ac-

quisition of high-resolution images, with large impact on cardiac imaging. Images

acquired with contrast injection (CTA) contain many details of the complex heart and

surrounding vessel structures, with promising perspectives for assessment of coronary

artery disease in a less invasive manner than conventional angiography.

Figure 1.11: Cardiac CTA images (transversal, coronal and sagittal views). Red arrows
point to the coronary arteries.

Similar to MRA, CTA is an imaging technique specialised in visualising arterial
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and venous vessels. It can be used to generate images of the coronaries in order to

evaluate them for stenosis, occlusion or aneurysms. Based on standard CT techniques,

a CTA scan is performed simultaneously with a high-speed contrast medium injection

into a small peripheral vein. Figure 1.11 displays three views of the CTA scan from

one patient.

Compared with MRA, acquiring a 4D CTA sequence is much faster and less affected

by respiratory motion or body motion of the patient. CTA images also provide higher

in-plane and out-of-plane resolution that is essential for visualising tiny distal parts of

the vessels. For further comparison between CTA and MRA imaging, see [204, 29]. In

this thesis, 4D CTA sequences are used to study the motion of the left ventricle and

coronary arteries.

1.2.4 Other Modalities

Apart from the aforementioned conventional coronary imaging techniques, there are

other imaging modalities which can be used to acquire images of the coronaries, such as

coronary artery microscopy [218], intraoperative fluorescence imaging [94] and vascular

elastography [150]. Two more recently developed intra-vascular imaging modalities are

intravascular ultrasound and optical coherence tomography. Since both modalities are

promising techniques we will briefly describe them.

1.2.4.1 Intravascular Ultrasound (IVUS)

The current “gold standard” of invasive angiography shows only the lumen, as the

X-ray produces a “shadow image” created by the injection of contrast dye (as seen in

Figure 1.9). Although angiography can show the “narrowing” of vessels and a dynamic

picture of the blood flow, it does not differentiate plaque and the other layers within the

vessel wall. Angiographic imaging is also considered unreliable when visualising regions

with multiple overlapping arterial segments. In contrast, intravascular ultrasound

(IVUS) can provide physicians with a better understanding of blocked vessels, which

allows for proper selection for bypass surgery or placement of stents and other devices

to restore blood flow at the site of the blockage.

IVUS is a medical imaging technology using a specially designed catheter with a

miniaturized ultrasound probe placed on the tip of it. The proximal end of the catheter

is attached to computerized ultrasound equipment. This tiny catheter is inserted into a

vessel where high-frequency sound waves reflect off tissue or vessel walls. The reflected

sound waves create a cross-sectional image from within the vessel throughout the

surrounding blood to aid in visualising inner wall of vessel structure in vivo. Figure 1.12

shows an IVUS image of the coronary artery. It shows distinct circular layers inside a

cross-sectional view of the artery. As the figure shows, IVUS allows clinicians to see
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the composition of the vessel wall in real-time. It yields information that goes beyond

what is possible with routine imaging methods, such as coronary angiography or even

non-invasive multislice CT scans. The information from IVUS can aid in stenosis

grading, stent sizing, and in confirmation that the stent has been placed optimally.

Figure 1.12: Example of IVUS imaging segmentation and its major components
(www.incor.usp.br/spdweb/projetos eng/ivus.htm).

Coronary arteries are the most frequent imaging target for IVUS. IVUS can be

used in coronary artery imaging to determine the amount of atheromatous plaque

built up at any particular point inside the artery. The progressive accumulation of

plaque within the artery wall over decades may lead to stenosis of the artery and

heart attack. IVUS can be used not only to determine both plaque volume and the

degree of stenosis, but also to assess the effects of treatments of stenosis such as with

hydraulic angioplasty expansion of the artery with or without stents, and the results

of other medical therapies over time. Figure 1.13 shows an example of combination

of non-invasive imaging with multislice computed tomography (MSCT) angiography

and invasive imaging with coronary angiography and intravascular ultrasound [225].
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(a) (b)

(c) (d)

Figure 1.13: Combination of MSCT angiography, coronary angiography and IVUS.
(a): Volume rendering of CT reconstruction, with arrow pointing to a lesion with in-
termediate luminal narrowing in the mid-section of the left anterior descending (LAD);
(b): Curved multiplanar reconstruction of the LAD and its corresponding lesion; (c):
Conventional coronary angiography, with the narrowing found on MSCT image con-
firmed; (d): A substantial amount of necrotic core (labelled in red) is shown in the
corresponding IVUS image of the coronary segment [225].

1.2.4.2 Optical Coherence Tomography (OCT)

As a new type of optical imaging, optical coherence tomography (OCT) is an intravas-

cular diagnostic modality capable of imaging the arterial wall with a resolution of

around 10 µm. OCT performs high resolution, cross-sectional tomographic imaging
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of the internal microstructure in biological systems. It is analogous to intravascular

ultrasound, except that it measures the magnitude and echo time delay of light rather

than sound. The advantage of OCT lies in its ability to perform ‘optical biopsy’,

yielding cross-sectional images of pathology in situ and in real time.

The axial resolution in OCT is determined by the bandwidth of the light source

used for imaging. Current OCT imaging technologies have axial resolutions ranging

from 1 µm to 15 µm, approximately 10 − 100 times finer resolution than standard

ultrasound imaging. The inherently high resolution provided by OCT imaging enables

the visualization of tissue architectural morphology. OCT is ideally suited for oph-

thalmology, because of the ease of access to the eye and the lack of other methods for

obtaining microstructural information. The principal disadvantage of OCT imaging is

that light is highly scattered by most biological tissues. In tissues other than the eye,

optical scattering limits image penetration depths to ∼2 mm. However, because OCT

is an optical technology, it can be integrated into a wide range of instruments such as

endoscopes, catheters, laparoscopes, or needles, which enable the imaging of internal

organ systems.

Figure 1.14: Resolution and imaging depth of ultrasound and OCT ([185]).

Figure 1.14 displays the resolutions and imaging depths of ultrasound and OCT.

Standard clinical ultrasound imaging can image deep structures but has very limited

resolution. Higher frequencies yield finer resolution, but ultrasonic attenuation is also

increased, which limits image penetration. The axial image resolution in OCT ranges

from 1 µm to 15 µm and is determined by the coherence length of the light source.
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In most biological tissues, image depth is limited to 2 − 3 mm by attenuation from

optical scattering.

Figure 1.15: OCT image (top: pull-back view of a coronary segment with length 53.8
mm; bottom: cross-sectional view of the coronary at length 41.9 mm.)

In Figure 1.15, a cross-sectional view of a coronary segment is shown in the bottom,

with the pull-back view at the top. The yellow vertical line in the pull-back view

indicates the position of the cross-sectional view. The corresponding X-ray angiogram

image of the coronary segment is shown in Figure 1.16.
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Figure 1.16: X-ray angiogram of the same coronaries as in Figure 1.15.

1.3 Contribution

In this thesis, we aim to construct patient-specific 3D + time coronary artery and

left ventricle motion models from preoperative Computed Tomography Angiography

(CTA) scans.

To achieve this goal, the thesis makes several contributions that focus on developing

methods addressing the following three aspects of the problem:

1. Segmentation of coronary arteries from 4D CTA images. Segmenting coronary

arteries from 4D CTA sequences is challenging because of the low image quality

and frequent presence of artefacts. This thesis proposes several methods to

extract the coronary centrelines in pre-operative 4D CTA images.

2. Coronary artery motion tracking from 4D CTA sequences. This task is the

main focus of our work. The thesis proposes several approaches to construct

the coronary motion models in order to tackle the challenges imposed by the

variations of the 4D CTA image qualities acquired from the patients suspected

of CAD. The methodology and evaluation of each approach are presented in

Chapter 4 to Chapter 7. A short summary of each chapter is provided in next

section.

3. Simultaneous motion tracking of the coronary arteries and left ventricle from

4D CTA. As part of the future work arising in this thesis, we propose to use a

3D cardiac atlas to facilitate the segmentation of cardiac components in CTA
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image, and simultaneously track the motion of coronaries and LV using a non-

rigid registration approach incorporating local phase information.

Registration of pre- and intra-interventional data is one of the key technologies for

image-guided radiation therapy, radiosurgery, minimally invasive surgery, endoscopy

and interventional radiology. Despite its importance and close relation to our work, it

is not included in this thesis. Nevertheless, it is a potential extension for this thesis.

To give some idea of how the work in this thesis could be extended we refer to these

recently published work [68, 148].

1.4 Thesis Outline

This thesis is organized as follows: In Chapter 2, a review of state-of-the-art literature

on vascular segmentation techniques is presented. We survey vessel enhancement

techniques that are routinely used to improve the visibility of vasculature structures

prior to the vessel segmentation. We review segmentation methods with regards to

their search strategy, how they detect the vessel wall and branching, and degree of user

interaction. We also review different strategies for evaluation and comparison of vessel

segmentation techniques. Chapter 3 reviews motion modelling techniques of coronary

arteries. In particularly, we survey motion modelling techniques for different imaging

modalities: X-ray angiography, MRA, CTA and others.

Following this, Chapters 4 to 7 present the original contributions of this thesis,

dedicated to the segmentation and motion modelling of coronary arteries from the 4D

cardiac CTA data. An overview of each chapter is given below:

• In Chapter 4, we assume the coronary motion can be recovered through cardiac

motion tracking in the 4D CTA sequence. The cardiac motion is then estimated

throughout the cardiac cycle by using a non-rigid image registration technique

based on a free-form B-spline deformation model. The coronary centrelines are

extracted at end-diastole using a ridge traversal algorithm. The centrelines are

then deformed to all other time points by applying the estimated deformation

field.

• In Chapter 5, coronary motion models are constructed by extracting coronaries

in all time frames via a graph search algorithm using prior information. A pair

of start and end nodes are supplied for each vessel branch by the user. The

centrelines are segmented as minimal cost paths in all phases of the 4D CTA

and used to construct the coronary motion model.

• In Chapter 6, we presented two template-based approaches. In both approaches,

non-rigid registration is used to derive the cardiac motion from each phase to
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end-diastolic phase. In the first approach (Section 6.5), we only transform the

start and end nodes of each coronary branch at end-diastole to the other phases.

Afterwards, we use template fitting to refine these two nodes’ positions until

they are located approximately on the ridge of the coronary vessel. Finally, we

extract the centrelines from the start to end node using a graph search algorithm.

In the second approach (Section 6.6), we transform the extracted centrelines

at end-diastole to all other phases via applying the estimated cardiac motion.

Template fitting and matching is then used to refine the equidistant samples

of the estimated coronary centreline voxels at each phase. The refined voxel

locations are chained together using the B-spline interpolation to generate the

centrelines of the coronaries at each phase.

• In Chapter 7, we propose an approach incorporating multi-channel information

into the registration framework. It combines a probabilistic atlas of the coronar-

ies, intensity information from CTA images to be registered as well as vesselness

information to fully automate the coronary motion tracking procedure and im-

prove its accuracy. We performed pair-wise 3D registration of time frames of the

4D CTA by using a multi-channel and multi-level implementation of the large de-

formation diffeomorphic metric mapping (LDDMM) framework. The segmented

coronary centrelines at end-systolic phase are transformed to end-diastolic phase

using this registration framework.

For the validation of each proposed motion tracking method, experiments conducted

on clinical 4D CTA data are presented at the end of each chapter.

Finally, a summary of the work presented in this thesis, their limitations and

potential future work is given in Chapter 8. In particular we explore one possible

extension of the work in this thesis: simultaneous motion tracking of coronary arteries

and left ventricle. A list of publications, the links to the e-thesis and videos are also

presented for reference.
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Chapter 2

Review of Coronary Artery

Segmentation

Visualisation and quantitative analysis of coronary arteries is an important step in the

diagnosis of cardiovascular diseases, stenosis grading, surgical planning, blood flow

simulation and post-surgery monitoring. Vessel centreline extraction can be used to

generate specific visualisations, such as endovascular views or multiplanar reformats.

Vessel segmentation can be used for quantification, e.g., stenosis grading or determin-

ing the dimension of stents to be used in interventions. The aim of this chapter is to

survey the important coronary segmentation methods proposed in last two decades,

classify them into groups and provide analysis both of the methodology and the ap-

plication aspects.

In this review, we mainly focus on the work on CTA and MRA coronary imaging,

since these modalities contain 3D information of the arteries and can be directly used

to build pre-interventional models. In our survey, both centreline extraction and lumen

segmentation of the coronary arteries are included. Segmentation of coronary arteries

from 2D DSA or X-ray images are also briefly reviewed. Although techniques developed

for other applications might also be appropriate to coronary artery segmentation, such

as the segmentation of other tubular like structures, finger prints, cerebral vessels,

pulmonary veins and others, most of the publications on those topics are not included

in this chapter with the exception of those directly relevant to this thesis.

Given the different nature of the coronary segmentation approaches (e.g. auto-

matic, semi-automatic, manual), the variation of the user skills for manual or semi-

automatic methods and the lack of an accepted gold standard for evaluation, we do

not attempt to compare the approaches in terms of performance. However, recently,

attempts at evaluating and comparing the performance of various algorithms for coro-

nary artery centreline extraction from the same CTA data set have been proposed in

the Rotterdam Coronary Artery Algorithm Evaluation Framework [153, 200].
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2.1 Previous Reviews

To the best of our knowledge, several reviews have been published on the topic of

vessel segmentation [66, 215, 216, 33, 115, 128]: Felkel et al. [66] summarized several

methods on vessel segmentation from the literature and discussed their applicability

to 3D peripheral vessel segmentation in CTA datasets of the human leg.

The review by Suri et al. [215, 216] has two parts: Part I focuses on the physics

of MRA generation and prefiltering techniques applied to MRA data sets. It also

discusses the prefiltering algorithms that are necessary for removing the background

and nonvascular structures in MRA data sets. Part II of the review presents the

overview in vessel segmentation algorithms. The vessel segmentation techniques are

divided into two groups, eight methods classified as nonskeleton and three others

classified as skeleton. Skeleton-based techniques compute the skeleton of the vessels

first and then reconstruct the vessel lumen by computing the vessel cross-sections.

Nonskeleton-based techniques compute the vessels directly.

In [33], Buhler et al. surveyed several geometric methods to solve basic visualisa-

tion and quantification problems for vessel analysis, such as centreline computation,

boundary detection, projection techniques, and geometric model generation. In [115],

vessel extraction algorithms are divided into six main categories: pattern recognition,

model-based, tracking-based, artificial intelligence-based, neural network-based and

tube-like object detection approaches.

In the most recent review on vascular segmentation, Lesage et al. [128] presented

their analysis along three axes: models, features and extraction schemes. Model-based

assumptions about the vessel appearance and geometry together with extracted image

features used for evaluating these models are combined in the extraction schemes to

perform the segmentation tasks. Each component is viewed as an independent module.

Through the combination of the three components, various segmentation methods are

organised into one framework. This facilitates the discussions and comparisons of

theoretical and practical properties of the reviewed segmentation methods.

2.2 Vessel Enhancement

Vessel enhancement, either as a pre-processing step for vessel segmentation or as a

technique to improve visualisation of volumetric data, is widely used in computer-

aided diagnosis. It facilitates vessel centreline extraction and lumen segmentation.

In this section, we will examine vessel enhancement techniques from the literature.

Since these methods can either be applied directly to coronary arteries or with minor

adjustment, we include not only the ones proposed for enhancing coronary arteries in

CTA images, but also those proposed for other vessel or line structures (e.g., finger
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prints, cerebral vessels, etc.) and other modalities.

2.2.1 Subtraction Filtering

Subtraction is the simplest technique to remove undesired structures in an image. It is

routinely used in many image processing methods. There are two types of subtraction.

One is to subtract one mask image from the image to be processed; the other is to

subtract certain structures in the image to be processed based on the information

derived from this image itself.

The first method is used in producing digital subtraction angiograms by subtracting

a pre-contrast image from the post-contrast image. This effectively enhances the

visibility of blood vessels by removing the unwanted bone and soft tissue structures

from the angiograms. However, the noise level in the resulting subtraction image is

higher than in either of the two original images because of the random distribution of

the noise within each image.

Often the second method is used to reduce the size of the image to be analysed, e.g.,

subtracting a heart chamber mask from a 3D CTA scan helps to speed up and improve

the accuracy of vessel analysis. Moreover, it can be used to enhance the visibility

of vessels. For example, Sen et al. [205] proposed a nonlinear adaptive filtering to

remove the background structures and consequently enhance the foreground vascular

structures in the unsubtracted angiograms without generating artefacts. A filter mask

with a size approximately twice that of the largest vessel is used for this purpose [205].

The filtering process has two rounds: Firstly, the local average of the pixel values

within the mask region centred on a pixel location x is calculated as m1(x). All the

pixels in this region with values below the local mask average m1(x) are used for the

calculation of a second average, m2(x). As for contrast-enhanced angiograms, the

vessels appear to be brighter than background. Therefore, pixels with values below

m2(x) most likely belong to background. By subtracting m2(x) from the original pixel

intensity I(x) at location x, the filtered result is obtained as:

Î(x) =

{
I(x)−m2(x), I(x) > m2(x);

0, I(x) ≤ m2(x).
(2.1)

By repeating this procedure for all the pixels in image I, the background is effectively

subtracted from image I and the visibility of vascular structures is enhanced.

2.2.2 Hessian-based Filtering

Many methods for vessel enhancement and segmentation are based on the knowledge

that vessels are tubular structures defined by their central axes and width. We group
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them into three categories: Hessian-based, diffusion and model-based filtering to be

discussed in Section 2.2.2, 2.2.3, and 2.2.4 respectively.

Hessian-based filtering is the most popular vessel enhancement technique in the

literature, because of its geometric properties and versatility. The vessel enhance-

ment based on the analysis of the eigenvectors and eigenvalues of the Hessian matrix

can be formulated flexibly according to any application requirements. It also can be

incorporated into the diffusion filtering as presented in Section 2.2.3.

Hessian-based filters calculate 2nd-order derivatives of the image I, build the Hes-

sian matrix H at each voxel x, decompose it into eigenvalues (λ1, λ2, λ3) and eigenvec-

tors (~v1, ~v2, ~v3) and analyse them to determine the likelihood of the voxel x belonging to

a vessel. This analysis is based on the following hypothesis: In the case of bright vessels

on a dark background and with the following ordering of eigenvalues |λ1| ≤ |λ2| ≤ |λ3|,
the direction along the central vessel axis is approximated by ~v1 when satisfying the

following three criteria:

(1) : λ1 ≈ 0;

(2) : λ2 ≈ λ3 < 0;

(3) : |λ1| � |λ2|.

Table 2.1 lists different geometric patterns in 2D and 3D, with reference to the

magnitudes and signs of the eigenvalues of the Hessian matrix. For second-order

3D variation, Figure 2.1 shows the shape space, highlighting the bright string that

typically represents the vessel structures in CTA images.

Table 2.1: List of geometric patterns in 2D and 3D, depending on the eigenvalues
λ1, λ2, λ3 (adapted from [71]). H: high value; L: low value; +/-: the sign of the
eigenvalue.

2D 3D geometric patten

λ1 λ2 λ1 λ2 λ3

L L L L L noise, no preferred direction

L L H- bright plate-like structure

L L H+ dark plate-like structure

L H- L H- H- bright tubular structure

L H+ L H+ H+ dark tubular structure

H- H- H- H- H- bright blob-like structure

H+ H+ H+ H+ H+ dark blob-like structure
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Figure 2.1: Shape space for Hessian matrix in 3D [133]

To extend Hessian-based filtering to a multi-scale framework, a multiscale Hessian-

based vessel enhancement filter is then defined in [73] as:

V(x) = max
σ

v(x, σ), (2.2)

where x is a voxel in the image I, v represents the filter response at one specific scale,

and σ is the scale for calculating Gaussian derivatives in order to derive the Hessian

matrix at each voxel.

The vesselness response v(x) is calculated at a range of scales (σmin ≤ σ ≤ σmax)

by computing the Hessian matrix at each scale. At every voxel, the largest vesselness

response maxσ v and its corresponding scale is selected. By calculating V(x) for all

voxels in image I, a vessel enhanced image is obtained. The corresponding σ value for

voxel x can be used to approximate the radius of the vessel.

There have been several filters proposed in the literature following this framework,

to be listed in chronological order. The proposed filters analyze the main modes of
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2nd-order variation in image intensity to determine the type of local structure present

in the image. They differ in how they define vessel-likelihood v(x, σ). In all cases,

v(x, σ) = 0, if λ2 > 0 or λ3 > 0, as also shown in Table 2.1 and Figure 2.1.

In [138], Lorenz et al. presented a multi-scale segmentation technique for tubular-

like structures in 2D and 3D medical images. It is based on normalized first and second

derivatives and on the eigenanalysis of the Hessian matrix H. The filter defined by

Lorenz et al. [138] is:

vLorenz(x) = ση
∣∣∣∣λ2 + λ3

2.0

∣∣∣∣ , (2.3)

where η normalises responses across scales.

Sato et al. also presented a method for the enhancement of curvilinear structures

such as vessels and bronchi in 3D medical images [197]. The filter proposed by Sato

et al. is formulated as:

vSato(x) =


σ2|λ3|

(
λ2

λ3

)ξ (
1 +

λ1

|λ2|

)τ
, λ3 < λ2 < λ1 < 0;

σ2|λ3|
(
λ2

λ3

)ξ (
1− ρ λ1

|λ2|

)τ
, λ3 < λ2 < 0 < λ1 <

|λ2|
ρ

(2.4)

where ξ ≥ 0 controls cross-section asymmetry, τ ≥ 0 controls the sensitivity to blob-

like structures, 0 < ρ ≤ 1 controls sensitivity to the vessel curvature and σ2 normalises

responses across scales.

In order to develop a vessel enhancement filter, Frangi et al. examined the multi-

scale second-order local structure of an image and proposed a vesselness measure on

the basis of all eigenvalues of the Hessian H [73]. The filter suggested by Frangi et

al. [73] is:

vFrangi(x) =


0, λ2 > 0 or λ3 > 0;

(
1− e

−
A2

2α2
)
e
−
B2

2β2
(

1− e
−
S2

2γ2
)
, otherwise

(2.5)

where

A =
|λ2|
|λ3|

, B =
|λ1|√
|λ2λ3|

, S =
√
λ2

1 + λ2
2 + λ2

3 .

Controlled by α, parameter A discriminates plate- from line-like structures; B (dom-

inated by β) accounts for deviation from blob-like structures and S (controlled by

γ) differentiates between high-contrast region (e.g., one with bright vessel structure in

dark background) and low-contrast background region. Scale normalisation is achieved

by multiplying H by σ2 before eigenvalue decomposition. The weighting factors α, β
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and γ are to be specified in order to determine the influence of A, B and S.

For the early detection of lung cancer from the radiographs and CT images, it is

vital for the pre-processing filtering to not only enhance nodules, but also suppress

the other anatomical structures such as ribs, blood vessels and airway walls. To

address this issue, Li et al. developed three selective enhancement filters for point

(blob), line, and plane-like structures which can simultaneously enhance objects of a

specific shape (for example, blob-like nodules) and suppress objects of other shapes (for

example, line-like vessels) [132]. Therefore, as pre-processing steps, these filters are

useful for improving the sensitivity of nodule detection and for reducing the number of

false positives. The point, line and plane filters are formulated as the following three

equations respectively:

LIpoint(x) =

{ |λ1|2

|λ3|
, λ1 < 0, λ2 < 0, λ3 < 0;

0, otherwise

(2.6)

LI line(x) =

{ |λ2|(|λ2| − |λ1|)
|λ3|

, λ2 < 0, λ3 < 0;

0, otherwise
(2.7)

LIplane(x) =

{
|λ3| − |λ2|, λ3 < 0;

0, otherwise
(2.8)

In [170], Olabarriaga et al. evaluated the aforementioned three Hessian-based

filters [138, 197, 73] for enhancement of the central axis of coronary arteries in multi-

detector CTA images acquired with contrast injection. The average filter response

obtained with different parameter configurations was measured at fixed distances from

a reference central axis determined manually. Results were compared according to

two objective measures, namely the response decay rate at the centre and the overall

response within 5 mm (approximately the largest radius for coronary arteries). It was

noted that the Frangi filter [73] provided better central vessel axis enhancement in

general [170].

One of the drawbacks of Hessian-based filtering methods for the enhancement of

tubular structures is that they have high computational cost, particularly when a

multi-scale framework is used. For each scale, for each voxel, the Hessian H must be

computed and decomposed before measuring the vesselness. In [172], Orlowski et al.

presented guidelines for a computationally efficient implementation of multiscale image

filters based on eigenanalysis of the Hessian matrix for the application to 3D medical

images of blood vessels. The method uses the Hessian trace, Hessian determinant

and sign to discard voxels unlikely to belong to vessels, prior to the calculation of the

Hessian eigenvalues.
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In summary, despite their drawbacks, Hessian-based vessel enhancement filters

have been shown to be applicable to various imaging modalities (e.g., DSA [138, 73],

CTA [197, 170], MRA [197, 73, 245]) and several types of vessels (cerebral [138, 197],

peripheral [73], hepatic [197], pulmonary [197], and cardiac [245, 170]).

2.2.3 Diffusion Filtering

Multiscale approaches for vessel enhancement [138, 197, 73] show good noise and back-

ground suppression results. However, these methods do not consider the local coher-

ence of vessel appearance. If a given voxel is considered to be part of a vessel, there

should be neighbouring voxels in the direction of the vessel axis that also are part of

the vessel. Filters that aim at increasing the coherence of the features in the images

by anisotropic diffusion can be found in [235, 236].

The different diffusion filtering techniques are briefly described and compared in

the following of this section. In scale space theory, an image evolves according to a

diffusion equation

Φt = ∇ · (D∇Φ). (2.9)

with the original image as the initial condition Φ0. A family of images can be gener-

ated where the features of interest are enhanced or blurred gradually. The diffusion

tensor D : Rm×m → Rm×m, with m denoting the dimension, is used to control the

diffusion flow. Diffusion-based vessel enhancement techniques essentially differ only in

the formulation of this diffusion tensor. In its simplest form, D is the identity matrix

and the diffusion equation is essentially equivalent to the heat equation:

Φt = ∇ · (I∇Φ) = ∆Φ . (2.10)

In Krissian et al. [118], the anisotropic diffusion is based on a multidimensional

diffusion flux. The diffusion flux is decomposed in a 3D orthogonal basis that depicts

the directions of principal curvature, effectively enabling enhancement of contours as

well as diffusion along the contours. The diffusion function associated with each vector

of this basis depends on the first-order derivative of the intensity along this direction,

instead of the traditional norm of the smoothed gradient. The minimal principal

curvature direction of the isosurface is then used to steer the diffusion, which requires

the calculation of the gradient vector field. This may pose a problem along the central

axis as the gradient vanishes at these locations, possibly leading to unstable behavior.

Canero et al. [38] presented an anisotropic diffusion filtering method to enhance the

local coherence of tubular structures in 2D X-ray coronary angiograms. The diffusion

strength is determined by the vesselness measure proposed in [73]. This vesselness

measure is used to steer the diffusion process and also determine the scale of the
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diffusion tensor to be applied at each voxel.

Manniesing et al. [146] proposed a method to enhance vascular structures within

the framework of scale space theory. They combine a smooth vessel filter which is

based on a geometrical analysis of the Hessian H, with a non-linear anisotropic diffu-

sion scheme. The amount and orientation of diffusion depend on the local vesselness.

Vessel enhancing diffusion (VED) is applied to patient and phantom data and com-

pared to linear, edge and coherence enhancing diffusion. The method performs better

than most of the existing techniques in visualising vessels with varying radii and in

enhancing vessel appearance. A diameter study on phantom data shows that VED

least affects the accuracy of diameter measurements. It is shown that using VED as a

pre-processing step improves level set based segmentation of the cerebral vasculature,

in particular segmentation of the smaller vessels of the vasculature. VED is also com-

pared with the vesselness filter proposed by Frangi et al. [73] on patient data. It can

be observed that the shrinkage effect of the vesselness filter is not present in VED.

In other schemes, the shrinkage effect is due to the increasing deviation from an ideal

tubular structure when approaching the boundaries of the vessel. Furthermore, VED

has better performance with respect to reducing the noise in the background area

compared to standard vesselness filtering.

Compared with Canero et al. [38], the tensor function used by Manniesing et al.

in [146] satisfies a smoothness constraint that is imposed by the diffusion process to

ensure that it is well-posed. Another difference is related to the steering of the diffusion:

Instead of having small diffusion for non-vessel structures, the VED approach [146]

exhibits strong isotropic diffusion to reduce background noise. Between the extremes

of isotropic and anisotropic diffusion, the parameter s is used to control the sensitivity

of the vesselness response V . Furthermore, in contrast to Canero et al. [38], the method

is extended to 3D.

The discontinuities in 3D vasculature images pose a problem for vessel extraction

and visualisation. Gaps may cause early termination of the vessel centreline extraction

processes or lead to leakage into non-vascular bright structures. In order to recover

the vessel network correctly, the gaps between the closest discontinuous vessels need

to be filled first. In [187], the authors presented a gap filling method which merges

discontinuities in images of micro-vascualar networks with undesirable gaps along the

vessels. The algorithm is based on the skeletonisation of the segmented network fol-

lowed by a tensor voting method. It merges the most common types of discontinuities

found in microvascular networks.
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2.2.4 Model-based Filtering

The second order derivatives of the image are sensitive to local intensity variations.

This is undesirable for vessel enhancement in images with noise or artefacts. Conse-

quently, Hessian-based vessel enhancement techniques have two main drawbacks:

1. Noise in the background region can lead to false positive responses which interfere

with the segmentation process.

2. The noise inside a vessel can cause the vesselness responses of the vessel to be

discontinuous, due to the false negative responses. Also, crossings (where two

relatively straight vessels meet) or vessel branching can produce false negative

responses. These effects degrade visualisation results and can cause serious prob-

lems for the subsequent vessel segmentation.

To address these issues, several researchers proposed model-based filtering techniques.

2.2.4.1 Flux-based Vessel Enhancement

Flux and MFlux are oriented, local flux-based medialness measurements designed for

coronary artery enhancement [127]. Gradient flux-based segmentation methods ex-

ploit the orientation and magnitude of gradient vectors around the boundaries of the

structure of interest. A cross-sectional geometric model is adopted for this purpose. It

assumes a cross-sectional vessel contour C(p, r,d) with centre p, orientation d and ra-

dius r as shown in Figure 2.2 (a). xi is a point on the contour after it is equi-angularly

discretized into N points xi with i = 1, ..., N , satisfying ‖xi − p‖ = r.

(a) (b) (c)

Figure 2.2: Flux-based vessel enhancement. (a): Geometric model for computing flux
response; (b): maximal flux response is achieved when the model (a) is aligned with
tubular structure in the image; (c): asymmetric gradient flux contribution over the
test contour [124].
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The gradient flux F through the cross-sectional contour C is formulated as:

F (p, r,d) =
1

N

N∑
i=1

∇I(xi)·
p− xi
‖p− xi‖

(2.11)

It effectively computes the normalised sum of the scalar product of the gradient vector

and the unit inward surface normal from all points xi on the contour C.

To penalise the asymmetric response from the underlying image, MFlux only takes

the smaller contribution from a set of two diametrically opposed voxels (xi,x
π
i ) along

the contour as illustrated in Figure 2.2 (c).

MF (p, r,d) =
2

N

2
N∑
i=1

min

((
∇I(xi)·

p− xi
‖p− xi‖

)
,

(
∇I(xπi )· p− xπi

‖p− xπi ‖

))
(2.12)

where xπi = xN
2

+i for an even number N of points on the contour C. By choosing the

minimal contribution from points xi and xπi , MFlux performs better with increased

discriminative power when the vessels run close to large non-vascular structure, e.g.,

the heart chamber.

2.2.4.2 Probabilistic Model Based Vessel Enhancement

The design of Hessian-based filtering relies on the observation that the ratio between

the minimum principal curvature and the maximum principal curvature should be low

on tubular objects and high on spherical objects. The principal curvatures are obtained

as the eigenvalues of the Hessian matrix of the intensity function. The principal

directions of curvature are the corresponding eigenvectors. The calculation of the

Hessian of the image intensity involves second order partial derivatives and is highly

sensitive to noise. Consequently, smoothing of the image at multiple scales is essential.

Due to noise and smoothing, junctions in real image data are characterized by high

ratio of the minimum principal curvature and the maximum principal curvature; thus

they tend to be suppressed by vessel enhancement filters which in turn leads to the

apparent discontinuity of blood vessels.

Ideally, vessel enhancement filters should enhance vessels and vessel junctions while

suppressing nodules and other nonvessel elements. In [6], Agam et al. proposed using

probabilistic vessel models from which vessel enhancement filters capable of enhancing

junctions while suppressing nodules are derived. The proposed filters are based on

eigenvalue analysis of the structure tensor that is a first order differential quantity and

thus less sensitive to noise. The authors derived parametric models for nodules, vessels,

T or X junctions, and Y junctions separately. By choosing a suitable model selection

technique, this method showed better performance when compared to Hessian-based
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techniques [6].

Beyond the aforementioned vessel enhancement techniques, there are many oth-

ers proposed in literature, e.g., structure tensor [5, 57], multiscale model-based ap-

proaches [119], directional filter bank [221], local line model [252] and multidimensional

adaptive filtering [238].

2.3 Segmentation Methods

All vascular segmentation methods essentially can be classified either as lumen seg-

mentation or centreline extraction. After vessel lumen segmentation, various skeleton-

isation methods can be employed to obtain the vessel centreline in a post-processing

step. The vessel skeleton tree can then be created by connecting these centrelines. As

for methods starting from extracting the centrelines, the cross-sectional vessel lumen

region can be found via fitting geometric models, finding the boundaries of largest

gradient variation or others. In the following, we will discuss several search strategies

for vessel centreline extraction.

2.3.1 Search Strategy

2.3.1.1 Region Growing

Region growing techniques start from a seed point or a selected small region, and

then incrementally recruit pixels to a larger region based on pre-defined criteria [32].

Two important segmentation criteria are intensity similarity and spatial proximity. It

is assumed that pixels that are close to each other and have similar intensity values

are likely to belong to the same object. The main disadvantages of region growing

approaches are that they require user-input and often lead to holes or leakage due to

noise and variations in image intensities. Consequently, user-interaction is essential to

guide the region growing. Post-processing is often required to refine the segmentation

results.

2.3.1.2 Thresholding

There are two basic types of thresholding: The first method only uses one supplied

threshold value to perform the thresholding, whilst the second one, hysteresis, uses

a pair of threshold values, a lower and an upper threshold. Compared with the first

one, hysteresis thresholding produces better connected segmentation as demonstrated

in Poli et al. [181].

More advanced thresholding technique use expectation maximisation [243], adap-

tive region growing [44], or other statistically-based schemes to select which voxels are

46



part of the object of interest and which are background.

Thresholding techniques do not normally compute connectivity information be-

tween voxels and as a result produce no structural information. Both region growing

and thresholding techniques are susceptible to noise and varying intensity within the

structure of interest. They also tend to produce holes or leakage and are difficult to

control.

2.3.1.3 Morphology

Morphology is routinely applied in image processing, thanks to its simple mathematical

formulation. Mathematical morphology for image processing can be divided into two

categories, namely binary morphology and grey-level morphology:

• The former uses a simple, pre-defined shape (named as structuring element) to

test an image and draw conclusions on how this shape fits or misses the regions

in the image. The basic operations include erosion, dilation, opening, closing

and the binary hit-or-miss transform.

• The latter category use a greyscale structure function to probe the image instead

of a binary structuring element. In this category, there are the grey-level hit-or-

miss transform [175, 162, 163], the top-hat transform and others.

For a more detailed discussion of morphological operations for image analysis, we refer

to [211].

Mathematical morphology can be either used as pre-filtering process as in [86, 161,

217] or as a vessel extraction strategy in [142, 32]. In [149], mathematical morphology,

region-growing schemes and shape features are combined together for 3D vascular

segmentation and bifurcation structure extraction. Haris et al. [86] used a top-hat

transform to filter pre-segmented images before employing an artery element model to

track the coronaries. Wilkinson et al. [242] used morphological connected set filters

for the extraction of tubular structures from medical images. The advantages of these

filters are that they are shape preserving and do not amplify noise.

Luengo-Oroz et al. [142] present an algorithm based on a morphological greyscale

reconstruction of 2D slices for the extraction of the 3D coronary artery tree. In order

to segment the coronaries from 3D CT images, a priori information of the radius of the

coronary and the z-axis sampling is used to define the size of the object that is being

searched and the area of search in the next slice respectively. A seed point on the

coronary artery is selected by a human expert in the first slice. A 2D morphological

reconstruction by dilation is performed from the seed point to segment the coronaries in

this slice. Afterwards, a set of potential seed points is generated for the morphological
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segmentation of the coronaries in next slice. This procedure is repeated until no more

potential seed points for the tubular structure can be generated.

Another automatic algorithm utilising grey-level mathematical morphology is pre-

sented for coronary artery segmentation from 3D CT sequences of a cardiac cycle

consisting of 10 phases in [32]. The algorithm relies on the blur grey-level hit-or-miss

transform [31] that is an extension of the blur binary hit-or-miss transform [28]. The

segmentation algorithm consists of three steps:

1. Detection of heart zone is accomplished by using a grey-level hit-or-miss trans-

form considering the lungs as background and the heart as the structure of

interest. The heart zone is consequently detected with two structuring elements,

a sphere for the heart zone and ellipsoids for the background (shown in Figure 2.3

(b)).

2. Detection of the aorta is achieved by locating a circular shape using the blur grey-

level hit-or-miss transform, followed by a region-growing as depicted in Figure 2.4

(a). The final result is shown by the red region in Figure 2.3 (c).

3. Detection of coronary arteries is performed by using a blur grey-level hit-or-miss

transform based region growing initialised from seeds obtained in the second

step, using structuring elements as in Figure 2.4 (b).

(a) (b) (c)

Figure 2.3: Heart zone and aorta detection [32]. (a): original image with segmented
aorta in red; (b): structuring elements used for the heart zone detection; (c): detected
heart zone.

It is reported that the application of the proposed method on three selected phases

from 20 patients 4D CTA scans led to correct segmentation in 90% of the cases. The

10% remaining incorrect cases corresponded to images where the signal-to-noise ratio

was very low [32].
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The small variation of the radius along the coronary vessels promotes the usage

of mathematical morphology for their segmentation, but this segmentation procedure

can also easily be compromised by the presence of other surrounding structures in the

images. Moreover, mathematical morphology does not perform well for noisy images

as reported in [32].

(a) (b)

Figure 2.4: Structuring elements for aorta and coronary segmentation [32]. (a): Aorta
segmentation: structuring elements for the circular axial section detection (left) and
region growing (right); (b): Structuring elements for coronary detection.

2.3.1.4 Level Set Methods

Level set evolution methods are based on an implicit surface that evolves accord-

ing to geometric and image-based forces in an attempt to adapt to structures in the

image. This type of technique has been applied successfully in vascular segmenta-

tion [140, 141, 9, 107, 147, 256]. However, using level set methods for vessel segmen-

tation may encounter difficulties when segmenting small vessels with high curvatures

and irregularities or when the local image contrast is low [76].

For instance, the curve evolution algorithm (CURVES) proposed in [140, 141] pro-

duces an accurate vascular segmentation by combining the modified curvature diffusion

equation (MCDE) with a level-set based technique. In [9], a 3D level set approach is

used to extract the blood vessels from angiography. The CURVES level set method

is evaluated together with a ridge traversal approach in [107]. It is reported that the

CURVES approach tends to leak outside the vessel structure making the skeleton less

reliable.
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2.3.1.5 Deformable Models

Deformable model fitting methods for vascular segmentation generally aim to find the

approximate medial axes of the tubular structures and then locate the boundaries of

the tubular structures by fitting models based on the medial axes to the image data.

In [96], Hoyos et al. developed a method for stenosis quantification in MRA images.

The algorithm starts from a user-selected point within the vessel and tracks the vessel

axis spatially to obtain its centreline. An extended active contour method is then

used to detect the vessel boundaries in the planes locally orthogonal to the centreline.

Finally, area measurements based on the resulting contours allow the calculation of

stenosis parameters. The algorithm is reported to perform well even for severe stenosis

and high vessel curvatures [96].

Due to vascular branching and thinning as well as the decrease of image contrast

from the root of the vessel to distal parts, it is very challenging to segment blood

vessels accurately. Leakage poses a severe threat when only image intensity is used

to guide the deformable models at areas where the image information is ambiguous.

To alleviate this problem, Nain et al. [164] combine the image statistics and a soft

shape prior to derive a region-based active contour that segments tubular structures

and penalises leakage. The results for a CT data set are shown in Figure 2.5 [164].

(a) (b) (c)

Figure 2.5: Segmentation of coronaries from CT data [164]. (a): Deformable model
based on image statistics without a shape prior; The artery “leaks” into the aorta. (b):
Deformable model based on image statistics and a shape prior after 400 iterations; (c):
Deformable model based on image statistics and a shape prior after 800 iterations. The
leak “pinches” off from the aorta.

In [155], Mille et al. used a deformable tube to model the varying cross-sections

orthogonal to the vessel’s local direction for vascular segmentation and reconstruction
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in 3D images. The method starts from a unique user-supplied root point to search for

minimal paths in order to build an initial vessel tree. An explicit representation of a

deformable tree is then introduced to model the vessel cross-sections and topological

relationships between segments. The final model is produced by evolving the central

curve of each segment and its associated variable radius function to minimise an energy

function representing a region homogeneity criteria.

The following sections survey the vessel tracking techniques in the spatial domain,

namely ridge traversal, probabilistic tracking, tracking based on model matching and

others. These techniques are different from those in Chapter 3 which focus on coronary

motion tracking in the temporal domain.

Tracking methods in spatial domain only consider the pixels in close proximity

to the vessel centreline, therefore they tend to be relatively fast. Such methods are

iterative in nature. At each step, a filter is applied to compute a point on the centreline

and a direction in which to search for next point. These methods often need to restart

after being trapped in an erroneous region, or fail to extract the correct vessel in the

presence of image artefacts.

2.3.1.6 Ridge Traversal

Ridge-based methods treat n-dimensional greyscale images as n + 1 dimensional el-

evation maps by plotting the voxel intensity information as the (n + 1)th dimension.

Figure 2.6 shows an example of an intensity ridge marked by the dark line within the

vessel lumen of a 2D image and the corresponding 3D elevation map of this 2D image.

In this newly created elevation map, intensity ridges approximate the skeleton of the

tubular objects. The ridge points are effectively the local peaks in the direction of

maximal surface gradient. For each local region, a ridge point can be obtained by

tracing the elevation map from an arbitrary point along the steepest ascent direction.

Since ridge-based approaches detect the skeleton from tubular structures, it can be

regarded as a specialised skeleton-based approach.

As a method for extracting vessel centrelines, ridge traversal has been originally

presented in [14] and further developed in [12]. The method starts from a user-supplied

seed point near the vessel centre and a scale factor σ. The scale factor defines the width

of the Gaussian kernel used to blur the image to suppress noise. Thus, it is crucial

for effective vessel extraction. The Gaussian blurring here acts as a matching filter

and creates the maximal responses at the vessel centreline. The user supplied seed is

moved towards the centreline iteratively by minimising a ridgeness function J through

a quasi-Newton minimisation method.

Aylward et al. evaluate the effects of initialization, noise and singularities on inten-

sity ridge traversal and present multiscale heuristics and optimal-scale measures that
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minimise these effects [12]. It is also shown that dynamic-scale ridge traversal is in-

sensitive to its initial parameter settings, operates with little additional computational

overhead, tracks centrelines with subvoxel accuracy and passes branch points [12]. The

major drawback of this method is that once the computed vessel centre point deviates

from the true vessel point, it is difficult for the algorithm to recover from the error.

(a) (b)

Figure 2.6: Vascular intensity ridge in 2D slice and its elevation map in 3D [248]. (a):
An example of an intensity ridge of the vascular structure in a 2D slice. (b): The
corresponding 3D elevation map of the 2D slice where the intensity value of each pixel
is plotted as the height.

2.3.1.7 Minimal Cost Path

Minimal cost path techniques reformulate the centreline extraction problem as an op-

timisation problem. The cost function is usually based on the likelihood of a voxel

belonging to a vessel centreline. Various ways can be used to measure this likeli-

hood, e.g., vesselness, medialness, distance map towards the two vessel boundaries, a

geometric energy functional [25], or region statistics [154].

Wink et al. [244] investigated two types of minimal path search algorithms: Dijk-

stra’s algorithm and the A* algorithm. A* is a variant of Dijkstra’s algorithm, with

heuristic function h(x) to steer the search process. A common heuristic term is the

Euclidean distance between the current node and the end node. Without this heuristic

term, A* is essentially equivalent to Dijkstra’s algorithm. It starts from the root node,

searches through all the neighboring voxels, selects the one with lowest cost and con-

tinues this process until reaching the end node. When the heuristic term is introduced,

the search space is bounded to a smaller region and the end node is reached faster.

Both search algorithms can be performed either uni-directionally (beginning from the
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start node only) or bi-directionally (beginning the search simultaneously from start

and end nodes). Combining them together offers four different search methods. The

application of these four different search methods are evaluated in 2D and 3D images

in [244]. It is shown that the number of nodes visited in the search process strongly

depends on the discriminative power of the feature used. Furthermore it is also shown

that for a specific application, using a simple heuristic function leads to a considerable

reduction in the number of nodes evaluated as compared with the search approach

without heuristic term.

(a) (b) (c)

(d) (e) (f)

Figure 2.7: Examples of CTA image and its corresponding cost images [154]. (a): CTA
image; (b): Region of interest; (c): Vesselness; (d): Post-processed intensity image;
(e): Cost image combining vesselness and intensity measures; (f): Region statistics
cost image.

In [245, 171, 152, 151, 154], the minimal cost paths representing coronary cen-

trelines are obtained using the measurement constructed from vesselness information.

The multiscale filter based on the eigenvalue analysis of the Hessian matrix is used to

highlight tubular structures in the image prior to the vessel extraction. As comparison,

in [161], a mathematical morphology technique is employed to filter the structures of

53



interest before the minimal cost path is used to extract the centrelines. Region statis-

tics are also used for constructing the cost image in [154]. Figure 2.7 shows an exemplar

region of coronary CTA image and its two types of cost images derived from it.

The minimal cost path method not only can be used for extracting vessel centre-

lines, but also for delineating vessel surfaces. In [246], the centreline is first found by

using a probabilistic vessel axis tracing method. The vessel contour in 3D space is

then determined as the minimal cost path on a weighted directed acyclic graph from

each cross-section derived from the extracted axis.

Similarly, Li et al. represent vessels as 4D curves by adding radius to the 3D

location. They use the minimal path technique to extract tubular surfaces [129, 131].

Moreover, Benmansour et al. developed a method for segmenting closed contours and

surfaces using a front propagation approach and a variant of minimal cost path search

strategy [25]. As for open curve segmentation, the stopping criteria is required to be

user-defined. In [23, 24, 22], the extraction of centrelines and boundaries of the vessels

is demonstrated by finding the globally optimal trajectories between two or more user-

supplied points via the fast marching algorithm. However, the minimal path technique

may fail if the image lacks contrast or the object of interest is long and curvy. In these

cases, the obtained minimal cost paths tend to be a straight line between the starting

and ending points. Benmansour et al. proposed to detect recursively new vessel

points along the curve of interest between the two given points [25]. These detected

vessel points guide the front to propagate further in the direction of the curve without

propagating in all directions. Thus, it not only reduces considerably the search space

in the image, but also prevents the early termination or short cut of the minimal path.

2.3.1.8 Model-matching

In this section, we classify the vascular segmentation methods based on model match-

ing into five categories, according to the underlying geometric models.

Core model

Blood vessels can be described as trees of branching tubes. Fridman et al. [75, 74]

extracted the vessel tubes and branching geometry in 3D via skeletons computed as

cores. Cores are height ridges of a graded measure of medial strength called medialness,

which measure how much a given location resembles the middle of an object as indi-

cated by image intensities. The authors use a core-following technique that optimizes

a medialness measure over position, radius, and orientation. It combines methods for

branch-finding, branch-reseeding, and core-termination with core-following to produce

a tool that can extract complex branching objects from 3D images without the need for
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user interaction. The core-based method is evaluated on synthetic images of branching

tubular objects as well as blood vessels in clinical data. The results reported in [75, 74]

show impressive resistance to noise and the capability to detect branches spanning a

variety of widths and branching angles.

2D disk (3D sphere) model

Haris et al. proposed to use a circular template model for coronary segmentation

in 2D angiograms [86], as shown in Figure 2.8. Where there is no bifurcation, crossing

or termination, the tracking problem is essentially to find a subsequent artery element

Ci+1(pi+1,di+1, wi+1) from the current artery element Ci(pi,di, wi). Parameter pi is

the centre of artery element Ci, di is the displacement vector pointing from current cen-

tre pi to next centre pi+1 and wi is the diameter of the vessel at pi. After a sample of

centre points pi and corresponding radii ri = γ(wi/2) are created shown as c0, c1, c2, . . .

in Figure 2.8 (a), they are then analysed to detect the vessel wall, based on the magni-

tude of 1st-order derivative using Gaussian filtering. Once the vessel points b1
i and b2

i

are detected, the position of next vessel element pi+1 is derived as pi+1 = 1
2
(b1

i + b2
i ),

the displacement vector di+1 = pi+1 − pi and width wi+1 = ‖b1
i − b2

i ‖ shown in

Figure 2.8 (b). Using circular templates with radius r larger than vessel radius w/2

(ri = γ(wi/2), 1.1 ≤ γ ≤ 1.4) facilitates the vessel branch detection [86]. Bifurcation

occurs when there are more than two artery points detected as shown in Figure 2.8 (c).

(a) (b) (c)

Figure 2.8: (a): Circular template model with centre p, radius r, and a sequence of
b2πrc samples taken over the circumference of circle, noted as ci, i = 0, 1, ..., b2πrc −
1 (b): Circular artery element model Ci(pi,di, wi) and subsequent artery model
Ci+1(pi+1,di+1, wi+1) obtained in the tracking process. (c): Tracking mode near a
bifurcation point [86].

Nain et al. proposed a ball measurement by introducing the local neighbourhood

B(p, r) in the shape of a ball centred at voxel p with radius r [164]. For a 2D image,

this model is effectively a disk as shown on the left in Figure 2.9. The measure ε1 for
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voxel p is then defined as the percentage of voxels that fall both within the ball centred

at p and the region R inside the contour of the object. In 2D, for a radius r similar

to the vessel width, most pixels on the contour have the same ε1 measure since locally

the same percentage of neighbors fall within the filter radius. This is illustrated in the

middle of Figure 2.9. To differentiate the contour points near a leak region from those

falling on the tube surface, Nain et al. further proposed measurement ε2: For each

voxel p, it looks at the ε1 measure of voxel p’s neighbors inside the contour since their

measure is high for points inside widening regions. ε2(p) is defined as ε1(p) plus the

sum of the ε1 measure of p’s neighbouring voxels that are inside the contour. Filter

ε2 guarantees that contour points close to the widening of the vessel have a higher

measure than contour points on the normal part of the vessel, as shown in the right

of Figure 2.9.

(a) (b) (c)

Figure 2.9: Illustration of ball measurement [164]. (a): Example of a 2D disk overlap-
ping with 2D image region in grey; (b): The local ball filter response ε1 for a synthetic
shape that represents a potential leak, given a radius that is the width of the tube;
(c): The local ball filter response ε2 for the same synthetic shape.

Similar 2D disk and 3D sphere models are also used by Whited et al. in [241, 240]

who referred to them as “pearls”. The segmentation process thus becomes “pearling”.

Figure 2.10 shows the pearling and user-refined results on a rotational angiography

scan of a head with an aneurysm. Following these early works, Slabaugh et al. pro-

posed to use partial differential equations for generating smooth tubular surfaces

from an ordered set of 3D balls [210]. Sphere models are also used by Lesage et

al. in [125, 126].

56



(a) (b) (c)

Figure 2.10: Example of pearling. (a): Thresholded volume rendering of the brain
angiography dataset; (b): Initial result of the pearling algorithm; (c): User-refined
pearling result [241].

Tubular/Cylinder Model

A multiple hypothesis tracking approach using a tubular template to segment 3D

vessel structures was proposed by Friman et al. in [77] and further extended in [76].

Here, the vessel segmentation is essentially formulated as finding the maximum model

matching path. At each potential location, the best fit of the template structure

with the image region is found, thus constructing this path. The authors propose to

simultaneously track multiple hypothetical vessel trajectories that potentially could

traverse low contrast regions and lead to an improved spatial tracking performance

in areas of low contrast. The vessel template model proposed in [77] has a flatter

vessel profile than the Gaussian profile used in [45, 119] and allows for flexible central

position, radius and orientation adjustment. 2D tube models are also used by Pechaud

et al. in [176] for extracting tubular structures from 2D images.

In [247], Worz et al. also pointed out that the 2D cross-section of medium and

large sized vessels is plateau-like as shown in Figure 2.11 which cannot be accurately

represented by a 2D Gaussian profile. The authors consequently proposed to model

vessels of varying sizes using a Gaussian smoothed 3D cylinder as shown in the bottom

row in Figure 2.11.
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(a) (b) (c)

Figure 2.11: Intensity plots of orthogonal 2D slices through (a) a thin vessel in the
pelvis, (b) the artery iliaca communis, (c) the aorta; Top row: 2D slice from 3D MR
images; Middle row: Intensity profile of the 2D slice; Bottom row: 2D cross-section of
generated 3D cylindrical intensity model [247].

(a) (b)

Figure 2.12: Cylinder models for vasculature [156]. (a): 3D tree structure with gen-
eralised cylinders representing branch segments; (b): Deformable generalised cylinder
with radius varying both along and around the axis.
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Extending from previous work on generalised cylinder models in [169, 251, 21],

Mille et al. proposed to use generalised cylinders to represent a deformable tree ex-

plicitly in order to segment and reconstruct the 3D vascular tree [156]. The topological

relationships between segments are modelled explicitly as in the example shown in Fig-

ure 2.12 (a). Compared to other methods, this allows easy quantitative analysis, such

as measuring diameters or lengths of vessels. The method first builds an initial tree

with a technique relying on minimal paths, given a unique user-supplied root point.

Within this constructed tree, the central curve of each branch segment and an associ-

ated variable radius function evolve in order to satisfy a region homogeneity criterion.

As an example, a deformable generalised cylinder is shown in Figure 2.12 (b).

Elliptical cross-sectional models

Circular models have been widely used to represent vessel cross-sectional shapes.

Although requiring fewer parameters, the circular model lacks the flexibility to repre-

sent non-circular sections, compared with the elliptical model. Krissian et al. com-

pared the circular and elliptic cross-sectional models in [120]. The authors showed

that the elliptic model not only is more versatile in representing vessel bifurcation and

malformation, but also provides higher accuracy when representing the segmented ves-

sel surfaces. Elliptical cross-sectional models have also been used for coronary artery

segmentation [70] and for cerebral arterial segmentation [209].

Superellipsoid model

In yet another approach, Tyrrell et al. proposed to use cylindroidal superellipsoid

models to represent 3D vessel segment for the segmentation of complex vasculature

in 3D images [224]. Figure 2.13 illustrates the superellipsoids with varying shapes.

Figure 2.14 shows how the superellipsoid model is incorporated together with vessel

traversal scheme to segment the vascular structures.

(a) (b) (c)

Figure 2.13: Superellipsoid models with fixed shape parameter ε2 = 1 and varying
parameter ε1 [224]. (a): ε1 = 1; (b): ε1 = 0.75; (c): ε1 = 0.25.
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(a) (b)

Figure 2.14: Superellipsoid model parameters and vessel traversal. (a): Dashed line
µ is the offset from the origin to the centre of a vessel segment. [P1,P2,P3] are the
principal axes of the localised vessel segment. Dark ellipse oriented relative to the
principal axes denotes the local vessel boundary with cross-sectional scales σ1 and σ2.
Line σ3 is the approximate length over which the vessel segment is locally cylindriodal.
(b): A sequence of fitted superellipsoids denoted k−2, k−1 and k superimposed on a
vessel. At step k+1, the local pose Pk

3 determines the next shift in the traversal [224].

2.3.1.9 Probabilistic Tracking

Florin et al. proposed using a particle filter approach for the segmentation of coronary

arteries in [70]. The coronary segmentation problem is reformulated as recovering

the successive elliptical cross-sectional planes of the vessel in a probabilistic fashion

with numerous possible states. Such states consist of the orientation, position, shape

and appearance of the vessel. They are recovered in an incremental fashion, using a

sequential Bayesian filter (particle filter). Given a starting position, the vessel tracking

essentially aims to find a state vector that upon its successful propagation provides a

complete segmentation of the coronaries. A Monte Carlo sampling rule that propagates

in parallel multiple hypotheses is used to account for bifurcations and branchings

in [70]. This work has been extended further to segment the cerebral arteries from

CTA in [209].

Schaap et al. proposed a Bayesian tube tracking algorithm that allows for incor-

porating a prior shape knowledge of the structure of interest [202, 199]. The vessel is

considered as a series of tube segments as shown in Figure 2.15. Each tube segment

at iteration t is characterised by a state vector xt = (pt,vt, rt, Ît)
T with location pt,

orientation vt, radius rt and average intensity value Ît. The method was applied to

track coronary arteries [202] and carotid arteries [199] from CTA data. It is shown

that the non-deterministic character of Bayesian tracking increases the robustness of

the tracking method [199].
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(a) (b)

Figure 2.15: Tube model and prediction of a new tubular segment. (a): A part of the
tube configuration x0:t; (b): The prediction of new tube segments from iteration t− 1
to t [202].

Furthermore, Schaap et al. used the extracted coronary centreline to segment the

coronary lumen using graph cuts and robust kernel regression [201]. The authors

propose a two-stage approach for segmenting the coronary lumen given a centreline:

1. Find an optimal labelling of lumen and background by searching for the image

region with intensities similar to the centreline intensity and also surrounded

by strong edges. This is based on the observation that the gradients of image

intensity are large on the boundary of the coronary lumen, while the image

intensities within the lumen vary smoothly in CTA images.

2. Remove falsely segmented regions that do not belong to the vessel of interest

using the fact that the segmented lumen should not contain any holes, that the

surface should be smooth and that side-branches should not be segmented. This

is done by using robust kernel regression and a cylindrical parameterisation of

the lumen boundary.

Figure 2.16 illustrates this process with a cross-sectional image.
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(a) (b) (c) (d) (e)

Figure 2.16: An example of coronary lumen segmentation. (a): Cross-section of the
input image; (b): Segmentation result after first step; (c): Initialisation for step 2;
(d): Final segmentation; (e): Automatic segmentation (white) shown together with
the reference standard (black) [201].

Inspired by the previous works of using particle filters for vessel segmentation,

Lesage et al. proposed another stochastic Bayesian tracking algorithm for coronary

segmentation in CT images [125]. The main contributions of this work are the proposal

of a constrained, medial-based geometric model and a new sampling scheme that takes

into account a distribution of hypotheses broader than classical particle filters for the

selection. For the details of this sampling scheme, we refer to Section 3 [125]. Before

the tracking process, prior knowledge was learned from a manually segmented database

of images. The experiments show that this method performs very well even for clinical

data with pathologies and local anomalies as shown in [125].

2.3.1.10 Gradient Vector Flow

Conventional vascular filters try to identify tubular objects at different scales and

combine all vesselness response into one multi-scale vesselness response. The first-

or second-order gradient vectors used for vesselness response calculation are typically

derived in a Gaussian scale space. However, this process is essentially an isotropic

diffusion that does not preserve any edge information and may even lead to nearby

features to diffuse into each other as shown in the 3rd column in Figure 2.17. To address

this problem, Bauer et al. proposed in [19] to replace the multi-scale computation of

the gradient vectors by the gradient vector flow (GVF) because the latter allows for

an edge-preserving diffusion of the gradient information. The resulting vector field

(shown in the 4th column of Figure 2.17) is then used for detection of tubular objects

by applying Frangi’s vesselness measure. This not only prevents the merging of the

nearby structures, but also supersedes the computation at multiple scales.
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Figure 2.17: Orthogonal cross sections of 3D tubes and intermediate processing results
of multi-scale gradient vector computation compared with the GVF [19].

In [18], Bauer et al. extended their previous work [19] further to detect the medial

curves of structures of interest in 3D images. The gradient vectors computed by the

GVF are used to derive the vesselness measure V(x) [73]. Based on this vesselness term,

a medialness measure M(x) = 1 − V(x) is proposed to highlight the medial curves.

Since the magnitude of the GVF vanishes at medial curves for both tubular objects

and non-tubular objects, the complete medial curves of both types of structures can

be extracted independently of the size and contrast of these objects. This not only

allows the detection of centrelines of vascular structures, but also the extraction of

the medial curves in cases where the structures are not tubular such as junctions or

stenoses.

The strategies discussed above are often integrated with each other vertically or

horizontally to achieve best segmentation results, e.g., [149, 161].

2.3.2 Branch Detection

Several vessel extraction algorithms deal with branching implicitly, for example math-

ematical morphology [142], particle filters [70], model-based tracking [86, 76] etc. An-

other group of algorithms explicitly represent bifurcations [9, 10] or perform vascular

tree connection after obtaining the vessel branches [106]. The third group of algo-

rithms first segment vessel-like structures and then perform tree pruning to remove
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the unwanted branches [254, 241]. The tree pruning approach can be either based

on information about the absolute and relative lengths of branches, intensity profile

information, or information about the structure of the identified tree.

Carrillo et al. proposed to recursively track the branches and detect the bifurcations

by analysing the binary connected components on the surface of a sphere that moves

along the vessels [37]. In [155], Mille et al. build the vessel tree by back-propagation

starting from endpoints, which ensures that the junctions are detected. In [131], Li et

al. proposed to use a 4D interactive key point searching scheme. After identifying the

key points, the entire multi-branch structure extraction is reduced to finding structures

between all adjacent key points pairs as shown in Figure 2.18.

(a) (b) (c)

(d) (e) (f)

Figure 2.18: Vessel segmentation from an 2D angiogram based on 4D iterative key
points scheme (top row) versus 4D minimal path method (bottom row) [131]. Seeding
point is shown as red cross in (a) and (d). (a): Initial points and detected key points
shown in red; (b) and (e): Detected multi-branch centrelines; (c) and (f): Detected
vessel surfaces.

2.3.3 Radius Estimation

Vascular centreline extraction is not sufficient for the diagnosis and treatment planning

of coronary artery disease. Accurate quantification of coronary lumen and plaque pa-

rameters is essential for stenosis grading, stenting and surgical planning. There have

been a few publications addressing vessel lumen segmentation implicitly or explic-

itly [86, 76, 140, 144, 96, 131, 202, 125, 240, 247, 70, 224, 201, 250, 237].

All geometric-model based segmentation algorithms and Hessian-based methods

estimate the local vessel radius during the vessel centreline extraction. For Hessian-

based approaches, the vessel size is estimated to be roughly same as the size of the

kernel which produces the maximal vesselness response. For model-matching based

segmentation methods, the optimal fitting of the geometrical model with the local
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region produces the best estimation for the centre position and the size information

of the model which can be used to derive the radius of the vessel segment.

2.3.4 User Interaction

While researchers make every effort to develop fully automatic vessel segmentation

algorithms, most methods require some user interaction at least for the final verification

of the results. According to the required user-interaction, methods can be classified

to three categories: automatic, semi-automatic or interactive.

Fully automatic vessel segmentation algorithms only require the input of the image

to be processed, e.g., [224, 32]. Contrary to automatic methods, interactive ones are

performed by the user interactively using software tools which provide visual feedback

of the segmentation and also take input from the user during the process, e.g. [255, 12].

Thus, interactive segmentation can be time-consuming. It also relies on the skill and

experience of the users. Often the level of user interaction is between these two ex-

tremes, e.g., semi-automatic. For the semi-automatic methods, it is essential that the

user provides initialisations for the algorithm or corrections during the segmentation

procedure, such as specifying the start and end points for a coronary branch, or restart-

ing the segmentation after the algorithm fails to pass through the stenosis segment, or

steering the algorithm by accepting or rejecting the current segmentation. Most vessel

segmentation methods are semi-automatic and require various levels of user-interaction

to initialize the segmentation process, to visually inspect the results, to correct the er-

ror if it happens and to post-process the segmentations if necessary [164, 25, 244, 154].

2.4 Evaluation and Comparison of Segmentation

Methods

The comparison of segmentations is the topic of several papers [232, 107, 233, 123, 51].

These works mainly aim at evaluating the segmentation of anatomical structures, with

the potential of being extended for evaluating the coronary vessel segmentation. The

recent Rotterdam coronary segmentation challenge [153] has initiated an active in-

vestigation and comparison of various coronary segmentation methods. It has also

prompted subsequent work on comparing the segmentation results from various ex-

traction algorithms [200] and combining multiple annotations [226].

To evaluate an automatic or semi-automatic segmentation result, one can compare

it with a manual segmentation from an experienced clinician. However, different clini-

cians may annotate slightly differently which leads to inter-observer variability. Even

if the annotations for the same image are marked by same clinician at different time,

65



the results may also vary. This difference is referred to as intra-observer variability.

The performance of manual annotation, automated and semi-automated methods also

depend on the initialisation for each method and the length of the vessel being tracked.

2.4.1 Non-vascular Structures

Zijdenbos et al. [259] proposed an average similarity index (SI) to evaluate whether

or not an automatic segmentation technique could match or reduce the inter- and

intrarater variability of the manual method. The similarity index (SI) is defined as

twice the ratio between the volume of the intersection (overlap) and the mean volume

of a pair of labels in the same coordinate system. This definition ensures that SI is

sensitive to both the differences in size and location.

Assume L1 and L2 are the set of voxels classified with same label in two different

segmentations of the same image, respectively, n(L1) and n(L2) are the numbers of

elements in each set. The similarity index is then formulated as:

SI =
2n(L1 ∩ L2)

n(L1) + n(L2)
. (2.13)

The higher the SI value is, the better two segmentations agree with each other.

A slight change of SI formulation gives us a similar measure referred to as overlap

ratio (OR) as in Heckemann et al. [90]. OR is defined as:

OR =
n(L1 ∩ L2)

n(L1 ∪ L2)
, (2.14)

In [232], Warfield et al. used the expectation-maximization (EM) algorithm for

simultaneous truth and performance level estimation (STAPLE). Given a collection of

segmentations, the algorithm computes a probabilistic estimate of the true segmenta-

tion and a measure of the performance level represented by each individual segmenta-

tion. The source of each segmentation in the collection can either be a human observer

or an automatic segmentation algorithm. This work is further developed in [233] by

estimating observer bias and variance. Furthermore, STAPLE is straightforward to

apply to both non-vasculature and vasculature segmentation.

Besides the comparison of different segmentation results, how to utilise multiple

segmentations also poses an interesting question. Rohlfing et al. proposed a shape-

based averaging method to combine multiple segmentations in [189]. Individual seg-

mentations are combined based on the signed Euclidean distance maps of the labels

in each input segmentation. Compared to label voting [116, 184], this combination

method produces smoother, more regular output segmentations and avoids fragmen-

tation of contiguous structures as shown in [189].
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2.4.2 Vascular Structures

In [245], the difference between the automated or semi-automated method and the in-

dividual manual annotations is quantified and compared to the differences between the

manual annotations to determine whether the automated method can replace manual

annotations. The robustness of its proposed minimum cost path approach is tested

by varying the user-initialized seed points. Intra-observer variability is assessed by

performing multiple manual annotations for each observer. To ensure the fairness, the

evaluations are also carried out with multiple coronary segments of different lengths.

The Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm

as proposed in [232] generates ground truth volumes from a set of binary expert seg-

mentations as well as a simultaneous accuracy assessment of each expert. In [107],

Jomier et al. combined morphological operators and the STAPLE algorithm together

to obtain ground truth of centreline extractions as well as a measure of accuracy of

the methods to be compared for the validation of vascular segmentations.

In [123], Lange et al. utilised quantitative evaluation metrics for clinical 3D images

containing vessel trees of the brain and liver. The authors first presented a method

to identify corresponding points on different vessel trees interactively. They then pro-

posed four different metrics based on these correspondences. Although these metrics

were initially suggested for validating the results of registration, they can also be ap-

plied in evaluating the vessel segmentation, assuming the ground-truth segmentation

as target image, the segmentation to be evaluated as the transformed source image.

Assume E is the reference segmentation (ground truth) and Ê is the segmentation

to be evaluated. Let (pi, p̂i), i = 1, ..., n be all pairs of corresponding points on all the

vessel segments, while ∀pi ∈ E and ∀p̂i ∈ Ê. The average distance of corresponding

points on extracted centre lines is formulated as:

Daverage(E, Ê) =
1

n

n∑
i=1

‖pi − p̂i‖ (2.15)

The weighted distance is defined as:

Dweighted(E, Ê) =
1

n

n∑
i=1

(pi − p̂i)
TWi(pi − p̂i) (2.16)

where Wi is a 3×3 covariance matrix, representing the anisotropic location uncertainty

for the point pair (pi, p̂i) [190]. The distance between the two points are different in

different directions. Thus a weight matrix Wi is used instead of a scalar weight for

each pair.

From the vessel centrelines and a given corresponding point pair (pi, p̂i) (except

in the branching points) a normalised tangential vector pair (di, d̂i) can be computed.
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The cross product of these two vectors is used to evaluate the deviation of d̂i from the

ground truth di, referred to as directional deviation [123]. It is formulated as:

Ddir(E, Ê) =
1

n

n∑
i=1

‖di × d̂i‖ (2.17)

Lange et al. [123] also proposed a metric that is less dependent on the centreline

extraction. The metric calculates the relative volume overlap of corresponding vessel

segments. Similar to the overlap ratio as formulated in Equation 2.14, here the volume

overlap metric is defined as:

Dvol(E, Ê) =
1

n

n∑
i=1

Vi ∩ V̂i
Vi ∪ V̂i

(2.18)

where Vi and V̂i are the volumes of the corresponding vessel segments in the segmen-

tation E and Ê respectively.

These four evaluations metrics [123] can be used to evaluate both the accuracy of

vascular image registration and the accuracy of vessel centreline/lumen segmentation.

Even though most of the evaluation metrics have not been proposed for coronary artery

segmentation, they are in general applicable to any kind of vascular segmentations.

Similar as the volume overlap measure as in Equation 2.18, the Dice similarity metric

is used in [130, 201] to evaluate the vascular segmentation results.

As part of the 2008 MICCAI workshop “3D Segmentation in the Clinic: A Grand

Challenge II”, a coronary artery tracking competition has been started. For the de-

tailed information of this competition, see [153]. Without the ground-truth segmenta-

tion, it is essential to generate a reference standard from multiple manually annotated

datasets. One of the contributions of this work is the design of a consensus reference

standard for vessel tracking data with multiple observers using the weighted averaging

of 3D open curves. van Walsum et al. proposed to use the mean shift algorithm to

derived a weighted average of multiple paths [226]. This is shown to handle bifur-

cations of vessel structures or disagreements among observers better than arithmetic

averaging.

Figure 2.19 shows the averaging via the mean shift algorithm for determining the

reference standard from the various observations, as proposed in [226]. The mean

shift algorithm used here is extended from [50], where it originally was designed to

iteratively shift a data point along the gradient of a density that is determined by a

set of data points and kernel functions until the gradient vanishes, and the point has

arrived at the maximum of the density.
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Figure 2.19: Illustration of averaging via the mean shift algorithm [200]. Thin black
lines: The annotations of three observers; Thick black line: The resulting average.
The correspondence used during the last mean shift iteration is shown in light-gray.

To summarise the work involved in this coronary segmentation challenge, in [200],

Schaap et al. proposed a standardized evaluation methodology for the quantitative

evaluation of coronary artery centreline extraction algorithms on the same reference

database as in [153]. The major contributions of this work are defining measures for

the evaluation of coronary artery centreline extraction algorithms as illustrated in Fig-

ure 2.20 and providing thirty-two CTA datasets with corresponding reference standard.

Thirteen coronary centreline extraction algorithms were quantitatively evaluated and

compared according to the proposed four measurements in [200].

Figure 2.20: Illustration of different quantities for the assessment of vessel segmen-
tation [200]. The reference standard is shown as the horizontal line in the middle
with annotated radius depicted as the grey region. The metrics used to evaluate the
segmented coronary path are labelled above and below the reference standard. For
further details on the metrics, see [200].

Yuan et al. proposed to use a vessel model as prior knowledge by modelling a vessel

segment as a local line model and exploiting the second order information along the

line to capture potentially existing line structures in images. To test their method, the

authors proposed the following angular discrepancy measure in [252]: Let Ω be the

image domain and Ωv ⊆ Ω be the vessel region, given the ground truth of an image

I∗(x) =

{
1 if x ∈ Ω,

0 otherwise,
and d∗ : Ωv → R2, the true vessel direction, an angular
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discrepancy measure can be defined as:

Dangle =
1

Nv

∑
x∈Ωv

∣∣∣∣∣d(x)·

([
0 −1

1 0

]
d∗(x)

)∣∣∣∣∣ , (2.19)

where Nv = |Ωv|, d(x) is the estimated vessel direction at point x. The more consis-

tent the estimated directions of vessels and the true directions are, the less angular

discrepancy there will be.

2.5 Visualisation of Vessel Structures

The visualisation of tubular structures such as blood vessels is an important topic,

particularly for vascular disease diagnosis and treatment. CTA and MRA provide

3D high-resolution volumetric data sets of the human body, containing the vessels of

interest. However, they also contain many other objects of less or no interest. Also,

the vessels of interest often lie across multiple slices. This makes direct visualisation

(e.g., volume rendering, maximum intensity projection and shaded surface display)

without pre-processing unable to visualise all the vascular structures of interest or to

achieve satisfactory accuracy. Two ways of pre-processing are often used to assist the

visualisation:

• One is to remove the irrelevant structures before using the aforementioned visu-

alisation techniques.

• The other is to obtain the central axis segmentation for the tubular structures

of interest. The central axis as an input for the visualisation algorithms is then

used as a camera path to reorganise the image and display the whole length of

tubular structure within a single image using curved planar reformation (CPR).

2.5.1 Visualisation without Reformation

Previously, there have been a few papers discussing this type of volume visualisation

technique [63, 145]. Here we briefly summarise all major algorithms proposed for

visualising 3D volume, with a focus on tubular objects.

Maximum intensity projection (MIP) is a visualisation method for 3D data. This

algorithm casts a ray through the 3D data for each pixel in the resulting image. Only

the highest-attenuation voxels found on a ray are preserved. It provides a 2D projection

in the visualisation plane of the voxels with maximum intensity that fall in the way

of parallel rays traced from the viewpoint. It picks up the maximum intensity voxel

encountered in the projected ray. The disadvantage of MIP is that it loses the 3D
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depth information and over-estimates stenoses [89]. It also does not allow depiction of

overlapping structures. The main advantage of MIP lies in its computational efficiency.

Due to the general infusion of contrast medium, not only the coronary arteries are

filled with contrast medium, but also the cavities of the heart and other vascular struc-

tures. When full-volume MIP is applied, these cavities and other vascular structures

are likely to overlap and obscure parts of coronary arteries.

To avoid obscuring of the vessels by other high density structures (e.g., bone and

calcification), a Sliding-Thin-Slab MIP (STS-MIP) was proposed [166]. To obtain STS-

MIP, a thin-slab (3-10mm) is selected from which an MIP image is reconstructed. This

slab is moved through the volume, with the distance of slab movement smaller than

the slab thickness, and at each step an MIP is created. This method provides vascular

visibility within a sequence of overlapping thin-slaps. Another way of addressing the

overlapping problem is to segment all contrast-enhanced structures except the coronary

arteries before computing the MIP projections. This requires the segmentation of all

cavities and other non-coronary vascular structures in the pre-processing step. After

that, a good projection of coronary arteries can be obtained.

Local maximum intensity projection (LMIP) developed by Sato et al. [198] is an

extended and improved version of maximum intensity projection (MIP). As MIP, the

basic principle is to create an image by tracing an optical ray traversing 3D data from

the view point in the viewing direction. However, LMIP differs from MIP in that the

latter method selects the maximum value along an optical ray, whereas LMIP selects

the first local maximum value encountered that is larger than a preselected threshold

value. This characteristic allows LMIP to depict geometric information.

Volume rendering uses a similar ray-casting technique and calculates the sum of the

weighted contributions of all voxels along the casted ray. In contrast to MIP and its

extended methods, volume rendering uses nearly all of the data, allows demonstration

of overlapping structures, and produces few artefacts. Other advantages of volume-

rendering over MIP and shaded surface display (SSD) are illustrated by the examples

in [104]. The disadvantage is that it requires substantially more computing power.

For small structures like vessels, it only provides restricted views without segmenting

the image prior to the volume rendering. For all the visualisation methods discussed

so far, the user cannot directly manipulate the individual anatomical objects.

In [34], Bullitt et al. present a method of combining ray casting with segmented

tubular objects, such as blood vessels. The method first projects segmented tubes using

a modified z -buffer that records additional information about the objects projected. A

subsequent step selectively performs volume rendering only through the object volumes

recorded by the z -buffer. This method is extended for arbitrary shape objects in [35].

Basically, the proposed method combines object-ordered and image-ordered rendering

techniques. The former is used to project the selected points onto the viewplane. The
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latter is used to cast selected rays through a defined volume of space. This approach

also allows smoothly and interactively dilating segmentation boundaries along all axes,

and selectively not displaying the unwanted structures.

A surface rendering gives better information of the relative position of the vessels,

allowing rendering effects like lighting and depth cueing. It requires a binary segmen-

tation of the image for selecting the viewed surface. In the case of an isosurface view,

this segmentation is simply done by choosing a threshold on the image intensity, and

a smoothed surface can be obtained using marching cubes algorithm [136].

The shaded surface display (SSD) algorithm fits surface primitives such as polygons

or patches to constant-value contour surfaces in volume data. For a detailed description

about the algorithm, we refer to Magnusson et al. [145].

2.5.2 Curved Planar Reformation and Its Extensions

The traditional volume visualisation techniques described in previous section may pro-

vide incomplete clinical information due to the occlusions caused by irrelevant struc-

tures. It is also difficult to measure the degree of calcification or stenoses quantitatively

using those visualisation techniques.

To address the these problems, Kanistsar et al. [111, 110] proposed the curved

planar reformation (CPR) method and presented an automated vessel-tracking tool

for computing CPRs. CPR is a process of displaying tubular structures for diagnostic

purposes by generating longitudinal cross-sections to show vessel lumen, wall, and sur-

rounding tissue in one plane. Given a vessel centreline, CPR provides the visualisation

of the vessel in its entire length within one single image. Three different CPR meth-

ods were proposed in [111], as illustrated in Figure 2.21. Furthermore, Kanistsar et

al. presented enhancements to these three CPR methods: thick-CPR, rotating-CPR

and multi-path-CPR.

Figure 2.21: Curved planar reformation. (a): Projected CPR; (b): Stretched CPR;
(c): Straightened CPR [110].
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Despite the capability of visualising vessel lumen together with surrounding struc-

tures along the vessel centrelines clearly, CPR techniques are highly sensitive to the

input vessel centreline. Wrong centreline localisation can distort the vessel lumen

and lead to the misidentification of stenosis. As an exception, thick-CPR projects a

slab of a certain thickness, and therefore it is less sensitive to the precise centreline

localisation.

The six CPR methods discussed above still have diagnostically relevant limitations.

The vascular abnormalities may not be shown in the visualisation plane. Rotating the

re-sampled plane around the input centreline axis addresses this problem, but results in

a large set of images to be interpreted by the radiologists. Therefore, in [112], Kanitsar

et al. proposed helical CPR to display the entire vascular lumen in one representative

image. Helical CPR resamples a spiral around the vessel central axis to make sure

that no features of the vessel may be hidden by other structures as long as the vessel

area is sampled densely enough. To address the issue that parts of vessels might be

superimposed by other vessels, untangled CPR is proposed in [112]. Different from the

multi-path-CPR, untangled CPR produces an unobscured display of a vascular tree,

independent of the viewing direction.

2.6 Vasculature Registration

In this section, we survey the existing algorithms developed for the registration prob-

lems involving vascular structures. It is included in this review chapter because vas-

culature registration can assist segmentation, e.g., by forming vascular atlases or de-

forming the segmented vascular structures at one time point to predict their position

and shape at next time point. Moreover, vessel-based registration allows pre-operative

and intra-operative images to be aligned for diagnosis and treatment purposes. It can

also potentially improve the accuracy of vessel atlas constructing from single-modality

data sets acquired from a selected population. Furthermore, by registering vessel im-

ages of the same subject from different modalities, the benefits of different imaging

and visualisation techniques can be fully explored and utilised by the clinicians. As for

the application, vasculature registration is essential for diagnosing vascular diseases,

providing guidance for surgery, assisting the evaluation of the effects from medical

treatment.

Vasculature to image registration proposed in [13, 15] allows propagation of the

segmented vessels in one image (I0) to a set of other images (Ii,1≤i≤n) in order to obtain

the vascular structures in these images. This approach only requires segmenting the

vessels in one of a set of vasculature images. The proposed method [13] consists of the

following steps:
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1. Prior to the registration, an accurate segmentation of the vessel structures Iv0 is

obtained [14] for image I0.

2. For each image Ii, its vessel structures Ivi can be obtained without any segmen-

tation by registering Ii with the vessel model Iv0 . A point-based similarity metric

with a rigid-body transformation model [15] is used for aligning the images Ii and

Iv0 . The centreline points from Iv0 are resampled and transformed to best fit the

intensity ridges in the target image Ii. The rigid-body transformation parame-

ter space of the proposed similarity metric and its derivatives are quantitatively

analysed and searched for the best alignment.

The second step is repeated until the vessel structures Ivi,1≤i≤n are obtained for all the

images Ii,1≤i≤n. In [47], the aforementioned vasculature to image registration method

is further developed from rigid registration with six degrees of freedom to an affine

registration with 12 degrees of freedom.

Jomier et al. [105] further extended the vasculature to image registration [13] to

a hierarchical approach combining both rigid and deformable transformation models.

Following the global rigid vasculature to image registration as in [13], two more steps

are introduced in the new registration algorithm in [105]:

• A local piece-wise rigid transformation is applied to each vessel from the root

to branches in a hierarchical manner. This step utilises the detected branching

points and the typical tree structure of blood vessels. The root of the vessel tree

is first aligned. Then its children are registered to the image, one branch at a

time, from root to leaves in order.

• A non-rigid registration is then performed to align the vessels with the image,

under the elasticity and rigidity constraints. The elasticity constraint limits the

movement of vessel points along a tubular structure in the image. The rigidity is

defined as the maximum angle between the initial tangent vector and the actual

tangent vector. It is used to constrain the bending of the vessel.

The proposed method was validated in both simulated and patient data sets. Sub-voxel

accuracy, robustness to noise and efficiency are reported by the authors [105].

2.7 Summary

A review of the work on coronary artery segmentation has been presented in this

chapter. Our primary goal is to guide the designing of coronary artery segmentation

algorithms for our applications by analysing the existing techniques. Various methods

surveyed in this chapter form the basis of our work in Chapter 4 to Chapter 7.
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The work presented in this chapter mainly focuses on the segmentation of coronary

arteries from high-quality static 3D CTA or MRA images and some approaches for 2D

X-ray angiograms. To the best of our knowledge, little work has been dedicated to

coronary segmentation from 4D CTA sequences. This is possibly because the difficul-

ties imposed by the low image qualities of 4D CTA sequences. However, segmenting

coronaries from pre-operative 4D CTA images would facilitate the identification and

localisation of the artery to be operated on during the TECAB surgery. In the fol-

lowing chapter, we review the methods proposed in literature for modelling coronary

artery motion.
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Chapter 3

Review of Coronary Artery Motion

Modelling

Quantitative and accurate characterisation of abnormal wall and vascular patterns (lo-

cation, shape, and motion) of the heart is of major importance for diagnosis and treat-

ment. For a long time, monoplane and biplane X-ray techniques were the only tech-

niques available to dynamically visualise coronary and ventricular structures. Early

attempts focused on static reconstruction and were based on computer vision ap-

proaches relying on epipolar geometry and feature matching. A first dynamic recon-

struction algorithm was proposed in [192]. It led to a fast and efficient scheme to

recover the centrelines from two sequences of projection images. However, all X-ray

image based methods suffer from one major drawback: the motion based on one 2D

image only reflects the movement of the coronary in the projection plane. Even if

X-ray sequences acquired from different viewpoints are used for motion modelling,

the 3D reconstruction of the vessels is required prior to or after the motion tracking.

Table 3.1 summarises the important publications on coronary motion tracking from

X-ray angiograms.

Technical advances in 3D echography, cine-MRI, tagged-MRI, and multi-slice com-

puted tomography (MSCT) have opened new perspectives during last decade. It is

now possible to describe the dynamic behaviour of the heart over the entire cardiac

cycle without 3D reconstruction from 2D image sequences. MSCT offers, in particu-

lar, full 3D imaging of all cardiac structures, including right and left coronary trees,

and significantly improves pre-operative planning capabilities [208, 48]. However, a

contrast agent is routinely used prior to the image acquisition in order to visualise

the blood pool or coronaries better. Because of the variations of contrast medium

distribution spatially and temporally, the brightness of coronaries and blood pool is

not perfectly constant which may hinder the motion tracking.

Although promising, few works have been devoted to motion analysis in MSCT.
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Of those published, most have focused on the left ventricle [212, 81, 80]. Much less

attention has been paid to the estimation of coronary motion. Some studies have been

performed on biplane angiography [192, 206], electron beam CT (EBCT) [4, 109] and

MRA [93, 195, 54]. Only a few papers have attempted to deal with coronary motion

from MSCT [98, 249].

Table 3.1: Coronary motion tracking from X-ray angiograms. Column 2: Only the
landmarks are tracked temporally. Column 3: The coronary tree is constructed before
or after the tracking. Column 4: The coronaries are only tracked in 2D projections.
Column 5: Coronary motion is tracked temporally prior to its 3D reconstruction.
Column 6: A 3D reconstruction of the coronary tree is obtained before tracking its
motion.

Image

modality

Land-

marks

Vessel tree Tracking

(2D only)

Tracking before

reconstruction

Tracking after

reconstruction

DSA [191], [196]

[183]

[191], [196] [183]

Biplane

Angio

[117]

[103]

[192], [62]

[205], [99]

[46], [160]

[206], [139]

[137], [167]

[62] [160], [167], [103] [192], [206]

[139], [137]

Rotational

Angio

[178]

[203]

[26], [30]

[222]

[203] [26], [30], [178]

[222]

3.1 Coronary Motion Modelling from Digital Sub-

tracted Angiography (DSA)

Coronary motion estimation from a sequence of Digital Subtracted Angiography (DSA)

has been first proposed by Rong et al. in [191]: Coronary vessel centrelines are ex-

tracted in the first image It=1. A differential motion estimation method is then used

to estimate the coronary motion along its centrelines, based on images It and It+1.

After obtaining the motion between these two phases, the centrelines are extracted

from image It+1 guided by the motion model from previous step. In the context of

a sequence, the extracted centrelines from previous phase are used to guide the ex-

traction for current phase until the end of the sequence. The motion estimation and

centreline extraction are combined to act iteratively. There are two main drawbacks

of this method:

• The motion based on the 2D DSA only reflects the movement of the coronaries
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in the projection plane.

• The method is based on the brightness of coronaries which is not perfectly con-

stant because of variations of contrast medium distribution spatially and tem-

porally.

Puentes et al. [183] overcame the restrictions of 2D DSA images by acquiring nearly

orthogonal, simultaneous biplane angiographic image sequences corresponding to stan-

dard examination views (left anterior oblique - LAO 60◦ and 20◦, and right anterior

oblique - RAO 30◦). Two sequences acquired from distinct views enable the 3D recon-

struction of coronaries. For each view, 15 images were taken during a dye injection in

the left coronary artery in one heartbeat. As a pre-processing step, image subtraction

is applied to enhance the vessels of interest and to eliminate the presence of irrelevant

structures. After that, a matching filter is used to enhance the structures correspond-

ing to a vessel profile with variable orientation. It also combines multiple resolutions

by using various matching templates corresponding to small, medium and large vessels.

A binary image is obtained by using a threshold to identify which pixels may belong to

a vessel, separating background and possible arteries. To detect the centrelines, skele-

tonisation and smoothing are also performed. A knowledge-based approach [79] is then

used for the reconstruction and labelling of the arterial tree. Here it is assumed that

changes in the positions of arteries’ centrelines are exclusively produced by respiratory

and cardiac motion. Coronary reconstruction and motion estimation are combined in

a prediction-projection-optimization loop. For each iteration, the method works in a

point-by-point mode:

1. Given the first reconstruction of 3D vessel points at time t, the coronary motion

is assumed to be smooth along arteries centrelines and rigid for each segment.

This is used to predict each point position at time t+ 1.

2. The predicted 3D point displacement is projected onto the left view and right

view images at time t+1. Within a pre-defined search area around the 3D point

and its projection, a correction process is carried out through aligning the 2D

images at time t and time t+ 1 using cross correlation as a similarity metric, in

each view. The corrected 3D point at time t + 1 is then reconstructed, and its

displacement is measured as the difference with respect to its position at time t.

3. Finally, a global optimization of the reconstructed centreline at time t + 1 is

performed by minimising a cost function built on a residual error and 3D motion

gradient, under the 2D/3D geometrical and epipolar constraints.

For all subsequent images from the sequences, position prediction, projection and

optimization are iterated to obtain the reconstruction and displacement vectors for all

centrelines [183].
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3.2 Coronary Motion Modelling from Biplane An-

giography

To study the dynamic movements of the epicardial surface during the cardiac cycle,

bifurcations of the coronary arteries on the epicardial surface in biplane angiograms

can be used as landmarks, localised in space and followed in time [117]. Kong et

al. [117] used coronary artery bifurcations as natural landmarks, establishing an ex-

plicit correspondence between frames of the sequence. Epicardial motion was analysed

by dividing the epicardial surface into three transversal and three longitudinal regions,

each having 10-20 bifurcation points. Each pair of consecutive points along an arterial

branch formed a unique segment that was studied in both projections. Bifurcation dis-

placements were compared to those obtained using implanted markers placed near the

bifurcations, showing a strong correlation. The tracked artery segments are recorded

and measured to yield a reproducible curves reflecting ventricular contraction and fill-

ing. The results can be used to quantify and compare the onset, duration, extent and

rate of segment shortening in multiple areas of the heart. Using coronary bifurcations

as landmarks facilitates the assessment of regional myocardial performance.

Prior to the work of Ruan et al. [192], most image analysis work on biplane X-ray

images of coronaries focused on static reconstruction that relies on epipolar geome-

try and feature matching techniques. The proposal of coupled reconstruction-motion

estimation in [192] initiated the motion tracking of the coronary centrelines over two

sequences of projection images. Motion estimation of the coronaries is performed on

3D centrelines. It is based on the same prediction-projection-optimization loop pro-

posed in [183] and described in the previous section.

In order to allow the physicians to observe closely a particular point on the artery

tree over the cardiac cycle, Dubuisson-Jolly et al. [62] proposed to rigidly register the

coronary angiography sequence so that the area around the point of interest appears

stable. The proposed algorithm automatically extracts a section of the artery of in-

terest, models it as a polyline, and tracks its motion. The problem is formulated

as an energy minimization problem which is solved by finding a shortest path in a

graph. The motion compensated sequence is then obtained by translating every pixel

so that the point of interest remains stable. Compared with [192], this work only

tracks the coronary segments in 2D as opposed to 3D tracking. While being sufficient

for the proposed application, the tracked motion only reflects the coronary movement

in a particular 2D projection. Also, the arteries deform in a more complex non-rigid

manner.

In [99], vessel skeletons are extracted in each X-ray angiogram by calculating the

gradient response and choosing the low response region surrounded by high gradient
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response borders. Then a motion trajectory is computed for each point on the seg-

mented artery tree independently. A set of vectors describing the general motion of

each artery branch is created to describe the 2D motion of the coronary arteries in

X-ray angiograms. This only reflects the coronary motion in a specific 2D projection

plane without considering any 3D geometrical information.

Chen et al. proposed a different framework in [46]: Firstly, the 3D static model of

coronary arterial tree is reconstructed from 2D X-ray cine angiograms; Secondly, tem-

poral motion tracking of the reconstructed 3D coronary model is performed with the

smoothness constraints; Finally, the kinematics and deformations of the reconstructed

3D coronary artery trees are analysed throughout the cardiac cycle. Particularly, the

magnitude of displacement, the velocity and acceleration obtained from the 3D left

coronary arterial tree is computed and analysed.

Mourgues et al. [160] proposed a method to construct a 3D+t model of the coro-

nary artery tree from non-simultaneous sequences, synchronized with an ECG and

acquired on a standard single-view angiograph. Their approach includes the follow-

ing four steps: Firstly, 2D segmentation and labelling consists of semi-automatic ex-

traction and labelling of the coronary artery tree in one image from each projection

sequence. The labelling is performed with an interactive tool that relies on a multi-

scale model-based pre-processing. Then, the hierarchical structure of the tree is au-

tomatically determined. The segmentation and labelling information is propagated

to other images from all projections during at least one cardiac beat. Based on the

hierarchical description of the coronary tree, the arteries are modelled by B-snakes

with an internal energy defined from the multi-scale model-based pre-processing. A

two stage optimization procedure is used to reduce the effects of large displacements,

crossing and overlapping arteries. Thirdly, a coherent 3D model is constructed by

alternately matching the artery pixels from two segmented projections corresponding

roughly to the same point in the cardiac cycle. Finally, the 3D skeleton is enriched

with cross-sections estimated from the acquisition geometry and the scales extracted

in the multi-scale pre-processing.

Based on the work by Mourgues et al. [160], Shechter et al. [206] presented a 3D

method for tracking the coronary arteries through a temporal sequence of biplane

X-ray angiography images. They reconstruct a 3D centreline model of the coronary

vasculature from a biplane image pair at one time frame and represent it as an ensemble

of 3D B-spline curves. Its motion is tracked using a coarse-to-fine hierarchy of motion

models: A global 3D rigid transformation, global 3D affine transformation, and finally

local 3D tensor product B-spline transformation are used to represent the motion of the

coronary artery. An energy minimization problem within a registration framework is

formulated in order to deform the coronary artery tree consistently with the angiogram

image pairs at later time frames. Using 3D constraints on changes in the lengths of
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the coronary arteries and on the spatial regularity of their motion, a hierarchical set

of coarse-to-fine 3D motion models is used to recover the temporal dynamics of the

coronary tree. Their algorithm was clinically validated in five patients by tracking the

motion of the left coronary tree over the cardiac cycle. The performance of the tracking

algorithm was quantified in 3D using a deforming vascular phantom. RMS errors were

computed between centreline models tracked in the X-ray images and gold-standard

centreline models of the phantom generated from a gated 3D MR image acquisition.

Furthermore, Shechter et al. measured the 3D displacements and velocities of the

coronary arteries due to myocardial motion and breathing [207]. First, a static 3D

model of the coronary arteries was reconstructed at mid-diastole from one pair of

images. The images were processed with filters that enhance the arteries, and the

arterial centrelines were semi-automatically drawn in the two images. Point-to-point

correspondences between the arteries drawn in the two projections were computed

automatically and a 3D model was reconstructed using knowledge of the geometry

of the imaging system. Using the static coronary tree model as initial state, the 3D

motion of the arteries was recovered using an automatic motion tracking algorithm.

This algorithm calculates the best 3D transformation of the reconstructed coronary

tree model such that the projection of the arteries remains consistent with the tem-

porally changing image sequence. An energy minimization framework was formulated

that uses gradient descent to recover the parameters of the rigid, affine, and local

deformations.

The motion field recovered from each dataset represents the arteries while the heart

is beating and the patient is breathing. Thus the motion field is a function of car-

diac phase and respiratory phase. A parametric model is then designed to decompose

the motion field into independent cardiac and respiratory motion components. It is

reported that the arteries move consistently towards the left, inferior and anterior dur-

ing a cardiac contraction. The displacement and velocity of the right coronary artery

during a cardiac contraction was larger than those of the left coronary branch [207].

Lorenz et al. [139] presented a model of the coronary artery tree. The geometrical

component of their model is based on the mean end-diastolic model of the coronary

centrelines from bi-planar coronary angiography images of 37 patients in [58]. Based on

the point sets of Dodge et al., Lorenz et al. [139] constructed a tree model of the coro-

nary centrelines represented as point sets connected by line segments. The diameter

of the main coronary arteries is chosen according to Dodge et al. in [59]. Applicability

of the model has been studied by matching the model to individual cardiac CT images

of 33 patients. For all patients the centrelines of the three main coronary arteries (left

anterior descending coronary artery, left circumflex coronary artery and right coronary

artery) are manually delineated and annotated. The model was adapted to the patient

data by minimizing the Euclidean distances between data points and model lines. A
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downhill simplex optimization procedure was used to search for the optimal trans-

formation parameters. Finally, they verified that their end-diastolic coronary artery

model could be adapted to patient data within an accuracy of a few millimetres.

Further work about a comprehensive shape model of the heart is presented in

Lorenz et al. [137]. In this paper, for the first time, a comprehensive cardiac shape

model comprising all four heart chambers, the trunks of the connected vasculature,

the coronary arteries and a set of cardiac landmarks is presented. The new model

can serve as a general geometrical reference model supporting various tasks associated

with cardiac image analysis.

Nwogu et al. [167] reconstructed a moving 3D coronary vessel by identifying the

vessel-of-interest in two biplane images, transforming them into centrelines, and track-

ing them in the subsequent images using deformable templates and graph techniques

for optimization. The whole process has three major stages:

1. The vessel is identified and abstracted into its centreline;

2. The centreline is approximated by a polyline and tracked using deformable tem-

plates;

3. The 3D vessel is reconstructed.

Different from previous work dedicated on segmentation and motion tracking from

X-ray biplane angiograms of coronary arteries, Johnson et al. [103] used biplane X-ray

angiography films to study coronary motion in order to utilise this prior knowledge

to alleviate the detrimental effect on the image quality imposed by coronary artery

motion during coronary MRA and CTA acquisition. In this study, the 3D motion

of the coronary arteries along the entire vessel length is characterised. The temporal

location and the periods of relatively low cardiac motion are identified from biplane X-

ray angiograms acquired at 30 frames per second with simultaneous electrocardiogram

recording for 15 patients with coronary artery disease. The right coronary, LAD and

LCX arteries are divided into proximal, mid and distal segments. The displacement

and velocity of a point in each segment were calculated throughout the heart cycle.

The 3D+t motion of each segment on each vessel was determined. The displacement

of the proximal, middle and distal segments of the right coronary artery are plotted

over the cardiac cycle as shown in Figure 3.1. All segments have a similar motion

pattern, with mid and distal segments exhibiting slightly more motion.
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Figure 3.1: Frame-to-frame displacement of the proximal, mid and distal parts of right
coronary artery over the cardiac cycle [103].

This study in [103] has also identified those periods of the heart cycle during which

maximal displacement was less than 1mm/frame for each artery. It is shown that there

are two periods in the cardiac cycle in which all three coronary arteries have relatively

little coronary motion (< 1 mm/frame or 30 mm/sec) [103]. The first of these periods

can be found at the completion of ventricular systole (34±8% of the cardiac cycle)

with duration of 118 ±78 msec. The temporal location of this rest period, however,

varied significantly among the three coronary arteries. No acquisition window was

able to capture the rest period of all segments of all arteries at the same time. A

second period of low motion was found at mid-diastole (72±5% of the cardiac cycle)

with duration of 187±119 msec. This period was more consistent throughout the three

coronary arteries and allowed for a window of 6% of the cardiac cycle during which,

on average, all segments of the LAD, LCX, and RCA are “at rest”. This period of low

motion potentially is the best time window for CTA or MRA acquisitions.

3.3 Coronary Motion Modelling from Rotational

Angiography

The 3D coronary tree may be obtained from biplane angiography, since this modal-

ity provides two synchronised projections of the coronary arteries. Alternatively, it

can also be reconstructed by selecting two views from two single-plane angiograms.

However, using only two projections is not sufficient to provide a precise point corre-

spondence as illustrated in Figure 3.2. This restriction can be eliminated by rotational

X-ray coronary angiography. By selecting the angiograms that correspond to the same
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cardiac phase in a rotational acquisition, the number of projections used for recon-

struction of coronary arteries can be increased as required.

Figure 3.2: Epipolar constraint [26]. The 3D point Mpq that projects at p in image
I1 is located on the 3D line Lp that joins p to source position S1. The same point’s
projection in image I2 consequently is located on the projection `p of line Lp. In this
example, with two projection images (left), there are three possible 3D points could
be reconstructed as there are three intersections of `p with vessels in I2. However, only
one of these three points projects on a vessel in the additional image Ia (right). This
extra image eliminates the spurious reconstructed 3D points as shown next to Mpq in
light grey.

Blondel et al. [26] presented a method to compute a 4D tomographic representation

of coronary arteries from a single rotational monoplane X-ray sequence, allowing for

the visualization of the coronary arteries from any point of view and at any cardiac

cycle time. The authors use 4D B-spline solids to model coronary motion with reported

computation time of 15 to 30 min.

The 4D reconstruction of coronary artery as proposed by Blondel et al. [26] consists

of three major steps:

1. Static 3D reconstruction of coronary artery centrelines from the reference frames

I1, I2, ..., In, n ≥ 3 at a given cardiac phase. These reference images are selected

from one single sequence. They all are acquired at the same cardiac phase but

from distinct viewing angles. Thus, it is reasonable to assume that these images

are not affected by cardiac motion.

2. Estimation of 4D coronary motion from the resulting set of 3D centrelines. A

4D tensor product of 1D B-splines is chosen for the motion parameterization.

This preserves the spatial and temporal smoothness of coronary artery motion.

3. The derived coronary motion can then be integrated into the 3D tomographic

reconstruction of coronary arteries at all other phases [27].
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Bouattour et al. [30] proposed a technique for 4D reconstruction of the coronary

arteries from a sequence of monoplane X-ray angiograms. An initial 3D model of

the coronary centrelines is reconstructed from two selected views by using epipolar

geometry. These two views are selected based on three criteria, namely, orthogonality,

its position within the sequence and ECG information. A semi-automatic graphical

tool is then used to select corresponding points on the coronaries of interest in order to

reconstruct a 3D coronary model. The temporal tracking of the 3D coronary model is

then formulated as a 3D-2D registration problem. In this registration framework the

3D model deforms in space to best fit a given set of 2D angiograms. The 4D motion is

tracked hierarchically and modelled using rigid, affine and B-spline transformations.

The registration is guided by a sum of energy terms which measures the goodness of

the 3D-2D mapping and constrains the deformation of the model.

In Tsin et al. [222], the authors start from a reconstructed 3D model of coronaries

for a relatively static cardiac phase, and proceed to explicitly estimate the coronary

tree deformations from one cardiac phase to the next. The deformations of the 3D

coronary tree are tracked to yield a 4D reconstruction of the coronary tree. In this

work, the deformation of a coronary tree is modelled by two 3D parametric deformation

models, i.e., rigid and affine. There are three main components of the proposed method

in [222]:

• The external deformation force is derived from gradient vector flow (GVF) com-

puted from the vessel enhancement filter responses.

• A cyclic deformation constraint is introduced to preserve the cyclic feature of

the cardiac motion.

• A smooth deformation constraint based on Laplacian equation is used to ensure

the smoothness of the modelled cardiac motion.

GVF, cyclicity constraint, and smoothness constraint are combined together to form

a weighted energy function for 4D coronary tree reconstruction. This energy function

is minimised using least-squares optimisation to estimate the deformations between

two phases. Although the regularised rigid and affine deformation estimation con-

verges very fast in the tested data sets, instability and overfitting also occurred in

ill-conditioned cases. Finally, note that 3D reconstruction of coronary tree incurred

errors of 1.5mm and 2.5mm for manually labelled vessel centrelines and automatically

labelled ones in [222]. As baseline error, this reduces the accuracy of the motion model

considerably. Another major drawback with this work is that a global rigid or affine

motion model is insufficient to capture the total deformation of the coronary due to

cardiac motion. This restricts the accuracy and flexibility of the motion modelling.
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In [203], the authors present a method for projection-based motion compensation

and reconstruction of coronary segments and cardiac implantable devices from ro-

tational X-ray angiograms. The method uses markers on a device or guide-wire to

identify and estimate the motion of an object or region of interest in order to register

the projection images to generate a motion compensated reconstruction. The pro-

jection images are motion compensated based on these semi-automatically detected

markers and subsequently used for reconstruction.

3.4 Coronary Motion Modelling from MR Angiog-

raphy

To the best of our knowledge, coronary motion from MR images was first studied

in [93]. It is known that the motion of the coronary arteries during the heart cycle can

result in image blurring and inaccurate flow quantification, particularly when longer

acquisition windows are employed for breath-hold coronary flow measurements. To

quantitatively determine this effect, the temporal variation in coronary position is

measured in a plane perpendicular to the proximal portion of the vessel. Hofman et

al. reported the presence of substantial displacement of the coronary arteries in a plane

perpendicular to the proximal segment within the cardiac cycle, with a magnitude of

motion approximately twice as large for the right as for the left coronary arteries.

Furthermore, the authors estimated the resulting vessel blurring. It was concluded

that the duration of the acquisition window for high spatial resolution coronary flow

acquisitions should be less than 25 to 120 msec, depending on the specific coronary

artery studied.

Saranathan et al. [195] proposed to track the coronary motion over the cardiac cycle

to improve the efficiency of ECG-gated 2D coronary MRA. The coronary tracking

in this work was implemented on a spiral gradient-echo pulse sequence with sub-

millimetre in-plane spatial resolution as well as high image signal to noise ratio. The

authors computed the imaging efficiency as the percentage of the slices where more

than 30 mm of the vessel is visualized with and without coronary tracking. They

also evaluated the effect of using a linear motion model as opposed to true motion

model of the coronary. It is observed that the use of subject-specific tracking of the

vessel positions improved the efficiency of coronary artery imaging on breath-hold 2D

coronary MRA.

In [69], Fischer et al. analysed the residual coronary artery motion in the breath-

hold MRI and in free-breathing MRI acquired with affine motion compensation. An

image containing a coronary artery cross section was acquired at each heartbeat to

visualise and measure the respiratory induced motion. The amount of residual coro-
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nary artery displacement was directly measured to evaluate the performance of the

respiratory motion correction method. It is concluded that free breathing studies with

affine motion compensation displayed a similar amount of residual motion as a single

breath-hold, with the advantage of allowing for larger gating windows.

Dewan et al. [55] developed a multiple-template based tracking approach to track

the cardiac structures in order to improve the speed and quality of imaging those

structures in MR. The two main contributions of this work are:

1. A bidirectional coordinate-descent algorithm to improve the accuracy and per-

formance of motion tracking;

2. A method to choose an optimal set of templates for tracking.

The authors also validated the efficacy of the proposed approach by tracking the

coronaries and cardiac valves reliably and accurately in thousands of high-resolution

cine and low-resolution real-time MR images.

Based on their previous work [55], Dewan et al. further developed a method to

reduce the effect of motion variability of the coronary arteries in MRI [54]. In this

work, real-time low-resolution images in specific orthogonal orientations are used to

extract the coronary motion by the proposed tracking approach. The derived motion

information is then used to guide the high-resolution MR image acquisition on a beat-

to-beat basis.

3.5 Coronary Motion Modelling from CT

3.5.1 Electron Beam Computed Tomography (EBCT)

Both Achenbach et al. [4] and Kakadiaris et al. [109] presented thorough studies on

coronary artery motion from EBCT. The understanding of coronary motion poten-

tially would help the designing of suitable motion modelling algorithms for tracking

coronaries in temporal domain.

In [4], Achenbach et al. investigated the speed and changes of the speed of coro-

nary arterial movement from 25 patients during the cardiac cycle scanned with EBCT.

Each scan has 20 consecutive cross-sectional images acquired at the mid right coro-

nary artery. Movement velocity in the transverse imaging plane was calculated and

correlated with the simultaneously recorded ECG on the basis of the displacement of

LAD, LCX and RCA cross sections from image to image. The authors reported that

the velocity of in-plane coronary arterial motion varied considerably during the cardiac

cycle. It is also observed that the mean velocity of RCA movement was significantly

faster than that of the LAD or LCX. The lowest mean velocity was reported at 48%

of the cardiac cycle [4].
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Kakadiaris et al. [109] designed a physics-based deformable model framework for

morphological and motion analysis of the LAD during the cardiac cycle. The major

contribution of this work is defining a local coordinate system for the heart and param-

eterising both the shape and motion of the LAD in a single framework. The shape of

the LAD is modelled as a parametric generalized cylinder without assuming any par-

ticular tubular shape. The complex motion of LAD during the heart cycle is modelled

as a composite of three components: Longitudinal deformation, radial displacement,

and angular displacement over the cardiac cycle.

3.5.2 Multislice Computed Tomography (MSCT)

A temporal tracking algorithm for the coronary central axis in a 3D dynamic sequence

in MSCT was proposed by Laguitton et al. in [122]. The proposed method is based on

geometric moments and a local cylindrical approximation. The local characteristics of

the vessel (position on the vessel central axis, local diameter, intravascular and back-

ground intensities) are estimated on the first volume of the sequence, and then used

to track the vessel along the sequence. The correspondence between two volumes is

established through region matching with a distance criterion that combines geometric

moment-based descriptors with intensity information.

Husmann et al. performed a study [98] to prospectively determine the heart rate

(HR) dependency of 3D coronary artery motion by incorporating the durations of

systole and diastole into analysis. Thirty patients underwent ECG-gated 64-section

CTA screening to determine coronary motion velocities at bifurcation points. The

significance of velocity differences was determined by using analysis of variance for

repeated measures. HR dependency was determined by using linear regression analysis.

It is found that HR significantly affected 3D coronary motion through nonproportional

shortening of systole and diastole, leading to percentage reconstruction interval shifts

of coronary velocity troughs and peaks. Results suggest that image reconstruction

algorithms at CT coronary angiography be adapted to the individual patient’s HR.

Metz et al. [151] presented a method to derive patient specific coronary artery

motion models from ECG-gated CTA data. In this work, a 4D (3D+t) deformation

model of the coronary arteries is derived by 1) extraction of a 3D coronary model at

an appropriate cardiac phase, 2) non-rigid registration of the CTA images at different

ECG phases to obtain a deformation model and 3) deforming the extracted 3D coro-

nary model according to the obtained deformation field to yield a 4D motion coronary

motion model. Furthermore, Metz et al. aligned the coronary motion model with the

X-ray data using a 2D+t/3D+t registration approach [151].

Yang et al. [249] presented a method for the charcaterization of coronary artery

motion using MSCT sequences. Coronary trees are first extracted by a spatial vessel
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tracking method in each volume of MSCT sequence. A point-based matching algo-

rithm, with feature landmark constraints, is then applied to match the 3D extracted

centrelines between two consecutive frames throughout the cardiac cycle. The trans-

formations and correspondence matrices are estimated simultaneously and used for

deformable fitting of the vessels over the volume series. The authors derived both

point-based or branch-based motion features, and conducted experiments to evaluate

the performance of the proposed method with a matching error analysis.

3.6 Coronary Motion Modelling from Other Image

Modalities

Coronary artery tissue motion has also been studied from 2D IVUS images of a coro-

nary artery. Danilouchkine et al. [52] presented a method for estimating this tissue

motion based on the classical LK algorithm for optical flow. The OF vector field

quantifies the amount of misalignment between two consecutive frames in a sequence

of images. This work made two improvements on the classical LK approach. First,

using a simplified representation of the vessel wall as a medium with randomly dis-

tributed scatterers, it was shown that the OF equation satisfies the integral brightness

conservation law. Second, a scale-space embedding for the OF equation was derived

under the assumption of spatial consistency in IVUS acquisitions. The spatial coher-

ence is equivalent to a locally affine motion model. The latter effectively captures

and appropriately describes a complex deformation pattern of the coronary vessel wall

under the varying physiological conditions (i.e. pulsatile blood pressure). The perfor-

mance of the classical LK and proposed approach was then compared using simulated

IVUS images with an atherosclerotic lesion.

3.7 Summary

In this chapter, an up-to-date review of previous work on coronary artery motion

modelling is presented. The different publications are organised according to the

image modalities used for the motion modelling. Table 3.2 gives a brief summary of

the work on coronary motion modelling in literature.

Most work utilise the 2D angiogram sequences for the coronary motion tracking.

One important example from the literature is presented by Shechter et al. [206, 207]

where the coronary artery motion is tracked in a temporal sequence of biplane X-

ray angiography images. In their approach, a 3D coronary model is reconstructed

from extracted 2D centrelines in end-diastolic angiography images. The deformation

throughout the cardiac cycle is then recovered by a motion tracking algorithm based
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on non-rigid registration [193]. The limitation of using 2D X-ray angiograms is that

3D reconstruction of the coronary from 2D X-ray images is required in order to study

the motion of the coronaries in 3D. In the following chapters, the coronary motion is

directly modelled from 4D CTA sequence in our work when no 3D reconstruction is

necessary.

Table 3.2: A list of previous work on coronary motion modelling.

Image Modality Publications

X-ray Angiography [192], [206], [207], [220], [196], [191], [183], [117], [62],

[99], [46], [160], [139], [167], [103], [26], [30], [222], [203]

MR Angiography [93], [195], [69], [55], [54]

CT [4], [109], [122], [151], [249], [188]

Others [52]

Although much work has been done on tracking coronary arteries from 2D+t an-

giograms, coronary motion modelling from 3D+t MSCT sequences has received little

attention until very recently. The advantage of using 3D+t pre-operative MSCT se-

quences to model the coronary motion and the challenges involved have not been fully

investigated. In the following chapters, we propose various approaches of coronary

motion tracking from 4D MSCT angiography data.
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Chapter 4

Ridge-based Coronary Motion

Tracking

The extraction of blood vessels has been studied extensively in the past two decades.

Previous research on vessel extraction has concentrated on 2D X-ray angiography, 3D

MRA and CTA, focusing on retinal, brain, liver, lung and cardiac images. For the

coronary artery, the recent advances in computed tomography of coronary arteries [53]

have attracted a number of studies on using CTA for coronary artery disease diagnosis

and surgical planning. An up-to-date review of coronary artery segmentation tech-

niques is given in Chapter 2. Although coronary artery segmentation has been well

studied, e.g., as part of the Grand Challenge of Coronary Artery Centreline Extrac-

tion [153], constructing motion models of coronaries from pre-operative CTA sequences

to assist the intervention and surgery is a topic which has received little attention.

The work in this thesis differs significantly from the 3D vessel segmentation ap-

proaches. Our aim is not the extraction of the coronaries in single-phase high-quality

CTA datasets as in [153], but instead focuses on tracking the coronaries throughout the

cardiac cycle in dynamic cardiac CTA sequences. In this chapter and the following

chapters, we present our original contributions to building patient-specific coronary

motion models from 4D CTA images prior to the TECAB surgery. By temporally and

spatially aligning the pre-operative motion model with intraoperative endoscopic views

of the patient’s beating heart, this work can be used to assist the surgeon to identify

and locate the correct coronaries during TECAB procedures [67, 68]. Potentially, it

could reduce the 20%-30% conversion rate from TECAB surgery to conventional in-

vasive surgical approach due to the restricted view of the stereo endoscopic images as

observed in [158, 60]. However, the alignment of pre-operative coronary motion model

and intra-operative endoscopic images is beyond the scope of this thesis.
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4.1 Related Work and Overview

Existing vessel extraction methods can broadly be divided into two categories: skeleton

and non-skeleton approaches. Skeleton methods explicitly extract the vessel centrelines

and represent the results as parametric curves or discrete sets of points. Two main

skeleton methods are closely related to the work we present in this chapter:

1. Frangi et al. [72] propose a model-based method using a deformable contour

technique. A central vessel axis curve coupled with a tensor product B-spline

surface is used to model the linear vessel segments. In this approach the vessel

centreline is approximated using a B-spline curve. The deformation process is

based on moving the control points of the B-spline curve towards points which

have a high likelihood of lying along the central vessel axis. A vesselness filter is

used as the external force to drive the deformation. The vesselness filter reaches

its maximum at the center of the vessel and explicitly takes information of vessel

radius into account. Additionally, a tensor product B-spline surface is used to

model the vessel wall.

2. Based on the observation that vessel centrelines often corresponds to an inten-

sity ridge in the TOF-MRA images, Aylward et al. [14, 12] propose a ridge

traversal algorithm to track the vessel centrelines. This method begins from

a user-supplied seed point on or near a vessel, then it optimises a pre-defined

ridgeness function to obtain the closest local ridge point from where the next

guess is made. This process is repeated until the full extent of the vessel ridge

is traversed.

Figure 4.1: Endoscopic stereo views (left and right) of the coronary arteries and the
surgical instruments during the TECAB surgery.

A patient-specific 4D motion model of the beating heart with coronary arteries is

needed for planning and guiding the TECAB procedure. In this chapter, modelling
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the coronary motion is achieved by extracting the vessel centrelines from the end-

diastolic time frame of the CTA image sequence using the ridge traversal algorithm

(Section 4.3), aligning the sequence of cardiac CTA images to the end-diastolic time

frame (Section 4.4), and applying the deformation to the extracted coronaries at end-

diastole (Section 4.5). The resulting patient-specific coronary motion model potentially

can be used to augment the intraoperative images acquired with the stereo-endoscope

of the daVinci robot as shown in Figure 4.1. A less comprehensive version of the work

in this chapter has previously been presented in [253].

4.2 Multi-scale Vessel Enhancement Filtering for

Scale Selection

Various vessel enhancement techniques have been proposed in last decade. Three of

the most popular techniques for curvilinear structure filtering have been proposed by

Frangi et al. [73, 72], Lorenz et al. [138] and Sato et al. [197]. All of these approaches

are based on extracting information from the second order intensity derivatives at

multiple scales to identify local structures in the images. Based on that information

it is possible to classify the local intensity structure as tubular-like, plane-like or blob-

like.

In this thesis, we choose to use a multiscale Hessian-based vessel enhancement

filter by Frangi et al. [72] because of its superior performance compared with other

tubular filters [170]. The filter utilizes the 2nd-order derivatives of the image intensity

after smoothing (using a Gaussian kernel) at multiple scales to identify bright tubular-

like structures with various diameters. The six second-order derivatives of the Hessian

matrix at each voxel are computed by convolving the image with second-order Gaussian

derivatives at pre-selected scales.

Assuming a continuous image function I(x), x = (x, y, z), the Hessian matrix H
for the 3D image at any voxel x is defined as:

H(x) =



∂2I(x)

∂x∂x

∂2I(x)

∂x∂y

∂2I(x)

∂x∂z

∂2I(x)

∂x∂y

∂2I(x)

∂y∂y

∂2I(x)

∂y∂z

∂2I(x)

∂x∂z

∂2I(x)

∂y∂z

∂2I(x)

∂z∂z


(4.1)

At a pre-defined scale σ, Hessian H can be computed by convolving the image I(x)
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with second-order Gaussian derivatives shown in Figure 4.2 (a):

Hσ(x) =



∂2Gσ(x)

∂x2

∂2Gσ(x)

∂x∂y

∂2Gσ(x)

∂x∂z

∂2Gσ(x)

∂x∂y

∂2Gσ(x)

∂y2

∂2Gσ(x)

∂y∂z

∂2Gσ(x)

∂x∂z

∂2Gσ(x)

∂y∂z

∂2Gσ(x)

∂z2


? I(x) (4.2)

(a) (b)

Figure 4.2: Illustrations of second order Gaussian derivative and ellipsoid. (a): The
second order derivative of a Gaussian kernel at scale σ = 1. (b): The ellipsoid that lo-
cally describes the second order structure of the image with illustration of the principal
directions of curvature.

A vesselness term vσ(x) is then defined as in Frangi et al. [72] and is based on the

eigenvalues and eigenvectors of Hσ(x). Let |λ1| ≤ |λ2| ≤ |λ3| denote the eigenvalues

of the Hessian Hσ(x) and ~v1,~v2,~v3 are the corresponding eigenvectors. The principal

curvature directions are then given by ~v2 and ~v3 as shown in Figure 4.2 (b).

Since coronary arteries have higher intensity values in CTA images than surround-

ing soft tissues, the vessel centre points are the ones with maximal local intensities

after smoothing. Thus the corresponding eigenvalues λ2 and λ3 should be negative

for voxels on the arteries in CTA image; otherwise, the vesselness response should be

zero. As in [72, 73], the vesselness response vσ(x) at voxel x with scale σ is formulated

as in Equation 2.5.

Because the size of the cross-sectional profile of the coronaries varies substantially

from the root to distal end, a single-scale vesselness response is not sufficient to capture
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the whole range of coronaries. The vesselness response of the filter reaches a maximum

at a scale that approximately matches the size of the vessel to detect. Thus, integrating

the vesselness response at different scales meets the requirement imposed by varying

vessel sizes. In our work, the response is computed at a range of scales, exponentially

distributed between σmin and σmax. For scale sampling, we refer to Lindeberg et

al. [135]. The maximum vesselness response V(x) with the corresponding optimal

scale σoptimal(x) is then obtained for each voxel x of the image:

V(x) = max
σmin≤σ≤σmax

vσ(x). (4.3)

The scale σoptimal(x) approximates the radius of the local vessel segment centred at x.

There are two groups of outputs of this vessel enhancement algorithm:

• First, the final vesselness image denoted as Iv is constructed using the maximum

response V(x) of each voxel x as the intensity value;

• Second, the optimal scale σoptimal(x) is selected for each voxel x.

As for ridge traversal, only the optimal scale at each voxel is utilised in the rest of this

chapter.

4.3 Ridge Traversal

As for coronary CTA images, a coronary segment can be approximated as a tubular

object surrounded by dark background with highest intensity along its centreline. This

high intensity centreline can be seen as an intensity ridge. Given an image function

I(x), if the intensity value is considered as the height from zero, ridge points are those

where the image has a local maximum in the direction of the principal curvature of

I(x). Ridge points are distinguished by the local extrema of principle curvatures.

Consistent with the notation used in Section 4.2, the Hessian H at any voxel x in a

CTA image I is computed as in Equation 4.2, using the optimal scale σoptimal at voxel

x selected by Equation 4.3. The gradient ∇I is computed by convolving the image I

with first-order Gaussian derivative with kernel σoptimal(x) for each voxel x:

∇I(x) =


∂Gσoptimal(x)(x)

∂x
? I(x)

∂Gσoptimal(x)(x)

∂y
? I(x)

∂Gσoptimal(x)(x)

∂z
? I(x)



T

(4.4)

The scale factor σoptimal is crucial for effective ridge traversal. It specifies the width of

the Gaussian kernel used for computing the gradient and Hessian of I at each voxel x.
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This procedure suppresses the image noise and also creates a central intensity ridge

resembling a tubular structure.

The notations for eigenvectors and eigenvalues are also consistent with those in

Section 4.2: When the eigenvalues are ordered as |λ1| ≤ |λ2| ≤ |λ3|, the principal

curvature directions are then given by ~v2 and ~v3. The zero-crossing points of the image

gradient ∇I in the principal curvature directions satisfy the following two conditions:

~v2 · ∇I = 0 (4.5)

~v3 · ∇I = 0 (4.6)

Since vessels have higher intensity in CTA images than soft tissues, one can define

vessels in terms of intensity ridges. For an n-dimensional image ridge points can be

defined as points which are local intensity maxima in n − 1 dimensions. Thus, for a

3D image the corresponding eigenvalues λ2 and λ3 for ridge points should be negative:

λ2 < 0 (4.7)

λ3 < 0 (4.8)

Voxels that satisfy Equations 4.5, 4.6, 4.7 and 4.8 are defined as ridge points in the

3D intensity space.

Ridge traversal as a method for extracting vessel centrelines has originally been

presented in Aylward et al. [14] and further extended in [12]. The method starts from

a user-supplied seed point at or near the vessel centre, searches for the local ridge point

via optimising a pre-defined evaluation function, generates next guess from the newly

found ridge point and repeats this process until the full extent of the vessel ridge is

extracted.

We minimise the evaluation function as proposed in [14] to move the user-supplied

seed point to the closest centreline. This evaluation function is referred to as a ridgeness

function J :

J (x) = (~v2 · ∇I)2 + (~v3 · ∇I)2 ≈ 0 (4.9)

In this thesis, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [182] is used to

solve this non-linear optimisation problem.

For an ideal bright tubular structure with little intensity variation along its tangent

direction, the eigenvalue with smallest magnitude satisfies:

λ1 ≈ 0 (4.10)

The eigenvector ~v1 corresponding to this smallest eigenvalue λ1 can be used to ap-
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proximate the tangent direction of the vessel and to define the local vessel orientation.

Thus, the next prediction point pi along the vessel ridge can be found by stepping in

the direction ~v1 with a small step size t from current ridge point xi−1. If J (pi) is above

a pre-defined threshold level which implies pi is not on the vessel intensity ridge, the

BFGS optimisation is reapplied to move pi to the closest ridge point xi. This process

is shown in Figure 4.3. It is repeated ideally until the stopping criteria is met, e.g.,

the extracted vessel being long enough for the clinical interest or the intensity value

of the newly found ridge point being too low.

Figure 4.3: Illustration of ridge traversal. Starting from seed point p1, the first ridge
point x1 is found by the minimisation of J (p1). Next seed point p2 is estimated by
stepping in the direction ~v1 of local tubular structure with a step size t. The cost
function J (p2) is minimised again to search for next ridge point x2. This process is
repeated for the extraction of the vessel.

4.4 Cardiac Motion Tracking by Non-rigid Regis-

tration

Many methods have been developed for the extraction of cardiac motion from dynamic

image sequences, e.g., optical flow [61], active contour models [168], harmonic phase

(HARP) [173] and image registration approaches [43]. Compared with other methods

which rely on specialized image sequences such as tagged MR or HARP, non-rigid

image registration based on voxel similarity measures does not require any explicit

feature extraction and can be used on both MR and CTA images. Moreover, given

different types of images, the voxel similarity measure can be chosen to calculate a

suitable metric for that particular type of image. For cardiac motion tracking, non-

rigid registration based on a free-form deformation (FFD) model has shown promising

results in previous work presented by Chandrashekara et al. [42]. Thus a similar
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approach is adopted for our study of cardiac motion tracking from 4D CTA.

In this section, we assume the coronary displacement can be recovered together

with the ventricle motion from the temporal non-rigid registration of the entire se-

quence of cardiac CTA images. The motion of the heart is obtained from non-rigid

image registration using a free-form deformation model based on cubic B-splines [193].

Assume that a free form deformation is parametrised by a set of vectors Φ. Each vector

φi,j,k denotes a control point that is arranged on a regular lattice of size nx × ny × nz
with uniform spacing of δ along each dimension. The index i, j, k denotes the location

of its associated control point within the lattice. By using the cubic B-spline basis

functions to blend the control point vectors, a continuously varying displacement is

defined at each point of the image domain. As in [193], the free form deformation for

a voxel x = {x, y, z} is formulated as the 3D tensor product of the 1D cubic B-splines:

T(x, y, z) =
3∑
l=0

3∑
m=0

3∑
n=0

Bl(q)Bm(s)Bn(w)φi+l,j+m,k+n (4.11)

where i =

⌊
x

nx

⌋
− 1, j =

⌊
y

ny

⌋
− 1, k =

⌊
z

nz

⌋
− 1, q =

x

nx
−
⌊
x

nx

⌋
, s =

y

ny
−
⌊
y

ny

⌋
,

w =
z

nz
−
⌊
z

nz

⌋
. The functions Bl, Bm, and Bn represent the l-th, m-th and n-th

B-spline basis functions respectively:

B0(u) =
(1− u)3

6

B1(u) =
3u3 − 6u2 + 4

6

B2(u) =
−3u3 + 3u2 + 3u+ 1

6

B3(u) =
u3

6

The goal of non-rigid registration is to match one image to the other one. The B-

spline based free-form deformation model is used to warp the source image until it best

matches the reference image. To quantify this alignment, a similarity metric between

two images needs to be formulated. For a detailed review of similarity measures in

literature, we refer to [85].

In this chapter, for the experiments we evaluate and optimize four different similar-

ity measures, namely, sum of squared differences (SSD), correlation coefficient (CC),

mutual information (MI) and normalized mutual information (NMI).

Given two images, a reference IR and a source IS, and a transformation T, the

overall similarity of two images is given by the sum of the intensity differences at each

corresponding voxel location x over the image domain Ω. Assuming IR(x) denotes the
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image intensity of voxel location x in the reference image, IS(T(x)) is the intensity of

the transformed voxel position T(x) in the source image, sum of squared differences

(SSD) of two images is then given by:

SSSD =
∑
x∈Ω

(IR(x)− IS(T(x)))2 . (4.12)

Ideally, when two images are aligned after registration, this metric has the minimal

value of zero. However, this metric can be strongly affected by a small set of voxels

having significantly different intensities in two images.

The correlation coefficient metric assumes a linear relationship between the inten-

sity values of corresponding voxels in two images and is more robust than SSD. It is

defined as:

SCC =

∑
x∈Ω(IR(x)− 〈IR(x)〉)· (IS(T(x))− 〈IS(T(x))〉)√∑

x∈Ω(IR(x)− 〈IR(x)〉)2·
∑

x∈Ω(IS(T(x))− 〈IS(T(x))〉)2
. (4.13)

Here 〈· 〉 represents the mean intensity of a given image. The metric SCC increases

as the two images are better aligned. However, it is sensitive to local differences in

brightness and contrast of two images.

Mutual information as a similarity metric for image registration was proposed

in [49, 228]. Instead of comparing voxel intensities directly, mutual information mea-

sures how much information one image contains about another. It is based on the

marginal entropy of each image and the joint entropy of the pair. The marginal en-

tropy of an image I is defined as:

H(I) = −
∑
i∈I

p(i) log p(i) , (4.14)

where p(i) is the probability of voxels with intensity i occurring in image I. Without

incorporating the deformation information, the basic joint entropy formulation of two

images IS and IR with intensities iS ∈ IS and iR ∈ IR respectively is given by:

H(IR, IS) = −
∑
iR∈IR

∑
iS∈IS

p(iR, iS) log p(iR, iS) , (4.15)

where p(iR, iS) is the joint probability density function of the images IR and IS. As the

anatomical structures in two images are better aligned, their joint entropy decreases.

The mutual information of two images IR and IS is defined as:

SMI = H(IR) +H(IS)−H(IR, IS) =
∑
iR∈IR

∑
iS∈IS

p(iR, iS) log
p(iR, iS)

p(iR)· p(iS)
. (4.16)
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If two images IR and IS are completely independent, we have p(iR, iS) = p(iR)· p(iS)

which leads to SMI(IR, IS) = 0. As the two images become more dependent, or equiv-

alently, the information one image contains about the other one increases, the mutual

information SMI also increases. However, both joint entropy and mutual information

are dependent on the overlap between two images. In certain cases, a reduction in the

overlap of the anatomical structures of interest still leads to a decrease of joint entropy

or increase of mutual information, e.g., when the background of reference image and

transformed source image are perfectly aligned and not the anatomical structures. To

address this problem, a metric invariant to image overlap has been proposed in [214]

called normalised mutual information (NMI):

SNMI =
H(IR) +H(IS)

H(IR, IS)
. (4.17)

For further information on mutual information as similarity measure, we refer to the

survey by Pluim et al. [180].

Once the deformation model and similarity metric are chosen, the registration task

is essentially to optimise the similarity measure by adjusting the transformation param-

eters. The intrinsic differences among the various similarity metrics help to choose the

suitable one for a specific image registration problem. For contrast-enhanced coronary

CTA images, the choice of similarity metric also depends on the image characteristics

of each 4D CTA sequence. A gradient descent optimization procedure can be used to

optimise the selected similarity metric in order to find the optimal deformation. As for

the experiments in this chapter, the correlation coefficient measure provides superior

results over the other measures. From the results of the non-rigid image registration

of two adjacent images, we can determine the corresponding deformation T for these

two images due to the cardiac motion in the 4D CTA datasets.

4.5 Coronary Motion Modelling and Evaluation

After tracking the cardiac motion, the 4D motion model of the coronary arteries is built

by extracting the vessel centrelines from the end-diastolic time frame of the 4D CTA

image sequence via ridge traversal, aligning the rest of the sequence of cardiac CTA

images to the end-diastolic time frame via the aforementioned non-rigid registration,

and finally applying the obtained deformation information to the extracted coronaries

at end-diastole in order to derive the coronaries’ locations in all other time frames.

To obtain the cardiac motion, we performed non-rigid registration on four 4D

CTA sequences with 10 time frames each. Two datasets referred to SM4DCTA were

acquired from patients with coronary artery diseases in St. Mary’s Hospital, London.
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The other two denoted as RB4DCTA were acquired from patients at Royal Brompton

Hospital, London. Table 4.1 shows the scanner information and the size of each 4D

CTA data.

Table 4.1: 4D CTA data RB4DCTA and SM4DCTA

Dataset CT scanner Phases Image size (voxels) Voxel size (mm3)

RB4DCTA
Toshiba Aquilion 64 10

512× 512× 231 0.62× 0.62× 0.5

(I, II) 512× 512× 298 0.36× 0.36× 0.5

SM4DCTA
Philips Brilliance 64 10

512× 512× 382 0.4× 0.4× 0.4

(III, IV) 512× 512× 335 0.4× 0.4× 0.4

For each 4D CTA, the image at the end-diastolic frame of the cardiac cycle in

each sequence is chosen as the reference image. In our test datasets, the end-diastole

corresponds to 60% of the cardiac cycle. For simplicity, we refer to the end-diastolic

phase as I6 in the remainder of this section. Each of the rest of the image sequence

It (t = 0, 1, 2, 3, 4, 5, 7, 8, 9) is chosen as the source image and temporally registered to

the reference image I6. Here t denotes the temporal position of each image within one

4D sequence.

The natural deformation of the heart throughout the cardiac cycle from one patient

dataset is illustrated in first two rows of Figure 4.4. The corresponding transformed

images after alignment with reference image are shown in the bottom two rows of

Figure 4.4. Here we have used the cross correlation coefficient to measure the simi-

larity between the images. We expect that a certain amount of coronary motion can

be recovered from the cardiac deformation information obtained from this non-rigid

registration.
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Figure 4.4: Example of 10 time frames of a patient dataset before non-rigid regis-
tration shown in top two rows (from left to right, top to bottom sequentially) and
after non-rigid registration (as shown in bottom two rows). The 2nd frame in row 2
corresponding to 60% of the cardiac cycle was chosen as the reference image.

To select the scales using multi-scale vessel enhancement filtering, we set the pa-

rameters α = 0.5, β = 0.5, γ = 1 for computing the vesselness response in Equation 2.5,

following Frangi et al. [73]. The vesselness response is computed at different scales,

namely σ = 0.5, 1, 2, 4, 8mm. The maximal response with its corresponding optimal

scale is obtained for each voxel of the image. The optimal scale for each voxel is used

to facilitate the ridge traversal of the coronaries. Using this method the coronaries

can be extracted in real-time as only local information is used in vessel tracking in 3D

space.

A volume rendering of preoperative end-diastolic cardiac CTA image from one

patient is shown in Figure 4.5. The coronary arteries and myocardial surfaces are

displayed in three different views. The extracted 3D coronary centrelines via ridge

traversal from this volume are shown as the lines with large width in Figure 4.6.

102



Figure 4.5: Volume rending of CTA image in the end-diastolic time frame from one
patient dataset. From left to right, left circumflex artery and branches (LCX), left
anterior descending artery and a diagonal branch (LAD) and right coronary artery
(RCA) are visible and indicated by the red arrows.

Figure 4.6: Extracted coronary centrelines at ED (shown as the line with large width)
and predicted coronary centrelines at the remaining time frames (shown as the line with
small width). Red: right coronary artery; Green: left anterior descending coronary
artery and branch; Blue: circumflex artery and branch.

The cardiac motion derived above is then used to predict the motion of coronaries

103



in every time frame. For this the coronaries extracted from the end-diastolic time

frame via the ridge traversal method are transformed with the obtained deformation

information Tt to each time frame to form the coronary motion model. An example

is shown in Figure 4.6.

To evaluate the proposed approach for coronary motion modelling, for each 4D se-

quence the coronary artery centrelines are also extracted semi-automatically via ridge

traversal from the rest of the phases It (t = 0, 1, 2, 3, 4, 5, 7, 8, 9). For quantitative

assessment, the distance between the centreline M predicted by the non-rigid regis-

tration method and the semi-automatically extracted centreline U of each time frame

is measured to assess the accuracy of the coronary motion prediction. We define this

distance as:

D (M, U) =
1

NM +NU

( NM∑
i=1

‖mi − l(mi, U)‖2 +

NU∑
j=1

‖uj − l(uj,M))‖2

)
(4.18)

where NM and NU are the number of points representing vessel M and vessel U cor-

respondingly. For each point mi ∈ M, l(mi, U) calculates the closest point of mi

on the automatically extracted vessel U . Similarly, for each point uj ∈ U, l(uj, M)

defines the closest point of uj on the vessel M . We designed this distance measure

to be symmetric and to have the flexibility to discard or include the points from one

set which are missing in the other set. In this thesis, all the points from both sets are

used for evaluating the distance error. This ensures that the misalignment tangential

to the centreline direction is included in the distance measure.

In Figure 4.7 and Figure 4.8, we compare the predicted location of the centrelines

obtained by applying the non-rigid deformation with the actual position of the cen-

trelines. Figure 4.7 and Figure 4.8 both show that the registration method can only

recover part of the coronary motion. The reasons for this are two-fold: First, the

image quality of dynamic cardiac CTA is limited. This is especially true for CTA im-

age reconstructions during those parts of the cardiac phase in which the heart moves

rapidly. The second problem is the fact that the image registration is driven by fea-

tures at large scales such as the epicardium and endocardium. Transformation and

registration models focusing on small structures like coronaries need to be developed in

order to overcome these problems and improve the prediction of the coronary motion.
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D
is

ta
n
c
e
 (

m
m

)

 

 

LAD error before tracking

LAD error after tracking

LCX error before tracking

LCX error after tracking

RCA error before tracking

RCA error after tracking

Figure 4.7: Ridge-based coronary motion tracking and evaluation in CTA sequence I
and II. The LAD error before tracking is the natural displacement of LAD measured
as the distance between the extracted centreline at end-diastole and all the other
extractions in the remaining time frames. The LAD error after tracking is the residual
motion after motion tracking, calculated as the distance between the extracted LAD
and the predicted LAD centreline at each phase. Same measurements are presented
for RCA and LCX.

105



0

2

4

6

8

10

12

Coronary artery motion tracking and evaluation −−− CT Sequence III

D
is

ta
n

c
e

 (
m

m
)

 

 

LAD error before tracking

LAD error after tracking

LCX error before tracking

LCX error after tracking

RCA error before tracking

RCA error after tracking

0

1

2

3

4

5

6

7

8

9

10

11

Coronary artery motion tracking and evaluation −−− CT Sequence IV
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Figure 4.8: Ridge-based coronary motion tracking and evaluation in CTA sequence III
and IV. The LAD error before tracking is the natural displacement of LAD measured
as the distance between the extracted centreline at end-diastole and all the other
extractions in the remaining time frames. The LAD error after tracking is the residual
motion after motion tracking, calculated as the distance between the extracted LAD
and the predicted LAD centreline at each phase. Same measurements are presented
for RCA and LCX.

4.6 Summary

In this chapter, we have presented an approach for patient-specific coronary tree con-

struction and motion modelling from CTA images to assist the totally endoscopic

coronary artery bypass surgery. The proposed method utilises non-rigid registration

based on free-form deformations to derive cardiac motion, extracts the coronary cen-
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trelines as intensity ridges from end-diastolic CTA image and finally propagates the

extracted centrelines to other time frames using the derived deformation in order to

form the coronary motion model. This approach has been tested on the clinical CTA

datasets acquired from four subjects. The experiments show that only part of the

coronary motion can be tracked using the proposed method due to limitations im-

posed by the image quality and the lack of emphasis on coronary structures during

the registration process.

Another drawback of this approach is the demand of user-interaction during the

centreline extraction procedure. The ridge traversal performs well on idealised bright

tubular structure in a dark background. However, for the clinical 4D CTA data ac-

quired for our research, poor image quality frequently occurs due to three reasons:

1. Artefacts caused by the rapid motion of the heart during the acquisition, e.g.,

displaced reduplications of structures in different time frames (known as ghost-

ing [8]);

2. Stair-step artefacts resulted from misregistration of CT data acquired during

multiple cardiac cycles [234]. The cardiac cycles vary in length and therefore the

acquisition of different frames occurs in slightly different phases of the ventricular

contraction/relaxation. Consequently, the reconstructed image shows inclined

surfaces or discontinued objects in longitudinal sections referred to as stair-step

artefacts [231].

3. Low signal-to-noise ratio in certain phases caused by the application of ECG

pulsing windows to reduce the radiation dose for the patient [239].

The presence of artefacts and region of low signal-to-noise ratio in the 4D CTA images

cause the early termination during the ridge traversal. Also, the extraction method

could not correct itself, i.e., once the computed vessel ridge point deviates from the

actual one, the algorithm is not able to recover. This leads to further deviation of the

subsequently detected ridge points that could fall out of the vessel region. Moreover,

the ridge traversal algorithm starts from the user-placed seed point and extracts any

vessel branch satisfying the search criteria. Particularly, when branching happens,

the extracted vessel may not be the one of clinical interest. To correct the aforemen-

tioned three types of errors, user intervention is required to restart the ridge traversal

procedure by placing a new seed point on or close to the vessel ridge.
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Chapter 5

Graph-based Coronary Motion

Tracking

Following the work in previous chapter on vessel centreline extraction via a ridge

traversal algorithm, this chapter presents our work on coronary centreline extraction

from 4D CTA using an A* graph search algorithm. At each phase of the 4D CTA

sequence, the coronary centrelines are extracted as the minimal cost paths via the

A* graph search algorithm with prior information obtained from image registration of

the adjacent frames from the 4D CTA sequence. By extracting RCA, LAD and LCX

centrelines in all time frames through this method, a patient-specific coronary motion

model can be constructed from the extracted centrelines. The contributions of this

chapter are two-fold:

• We develop a more robust centreline extraction method than the ridge traversal

algorithm in order to segment the coronary centrelines from the pre-operative

CTA datasets provided, particularly for CTA scans with severe stair-step arte-

facts or noise as shown in Figure 5.1;

• Instead of tracking the coronary motion by non-rigid registration, we rely on

the extracted centrelines at all phases in each 4D CTA sequence to form the

coronary motion model. By doing so, we expect to achieve better accuracy of

the constructed coronary model as opposed to the one presented in Chapter 4.

Since the coronary motion model is built from the 4D CTA sequence prior to the

operation for assisting surgical planning or providing intra-operative guidance, the

accuracy of the model is more important than its being constructed automatically or

in real-time.
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5.1 Multi-scale Vessel Enhancement

A coarse segmentation of the coronaries arteries in CTA images is performed using a

multi-scale Hessian-based vessel enhancement filter by Frangi et al. [72], as presented

in Section 4.2. For any 3D image I from a 4D CTA sequence, the vesselness image

Iv is computed through the method in Section 4.2, together with the corresponding

optimal scale σoptimal(x) for each voxel x in image I.

(a) (b)

(c) (d)

Figure 5.1: CTA images with stair-step artefacts. (a) and (c): Two slices of a CTA
dataset showing the coronary artery in regions with stair-step artefacts highlighted
in (b) and (d) respectively. The red arrows point to the location where stair-step
artefacts occur.

5.2 A* Graph Search Algorithm for Extracting Min-

imal Cost Path

Various methods have been presented in literature restating the vessel segmentation

problem as an optimisation problem, e.g., [245, 244, 171, 246]. The task of extracting
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vessel centrelines can be converted to finding the minimal cost paths given a pre-

defined cost function. In Section 2.3.1.7, we provide a detailed review of the basic

algorithms for segmenting vessel centrelines through extracting minimal cost paths.

In our work, the A* graph search algorithm [87] is implemented to find the mini-

mum cost path from a start node S to an end node E. For each vessel branch, a pair of

start node S and end node E on the vessel are supplied by the user in each time frame.

The uni-directional graph search algorithm evaluates the smallest cost from node S

to current node x denoted as g(x) and the heuristic cost from current node to node

E denoted as h(x) to determine which voxel will be searched next. This procedure is

repeated until the end node E is reached. The search algorithm finds the optimal path

only if the heuristic underestimates the true cost. The Euclidean distance from x to

E is used to calculate the heuristic cost in our application. In our applications, this

heuristic measurement is guaranteed to be lower than the true optimal path cost.

Compared with the ridge traversal algorithm in Chapter 4, using the A* graph

search algorithm for finding the coronary centrelines has two advantages:

1. The A* graph search algorithm is particularly useful when multiple branches

originate from the start node or any node along the vessel, since specifying the

end node guarantees the extraction of the vascular branch of interest.

2. When artefacts (e.g., stair-step) or stenoses occur in the coronary region, the A*

graph search algorithm is capable of bridging those gaps and finding the optimal

path if a suitable heuristic term is applied.

In contrast, the ridge traversal algorithm does not guarantee the extraction of vessel

of interest in these two cases.

5.3 Prior Information for Coronary Motion Track-

ing

In some frames of the dynamic CTA sequence, the coronaries are difficult to extract.

This is especially true in those phases during the cardiac cycle in which the heart

is rapidly contracting or expanding. To allow the reliable extraction of the coronary

arteries in these frames we have extended the basic A* graph search for extracting

minimal-cost path approach as presented in previous section to a framework that

incorporates prior information about the location and shape of the coronary arteries

into the extraction process.

The basic idea of using prior information for tracking is that the location and

shape of the coronary arteries is likely to be similar in adjacent frames. Thus, we are

using the extracted coronary centrelines from time frame It to assist the extraction in
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next frame It+1. We define the prior probability of a voxel in time frame It+1 to be

part of the coronaries as a Gaussian probability P distribution centred at the voxel

locations of the coronaries in time frame It. The size of the Gaussian kernel σ is chosen

depending on the amount of motion between two adjacent time frames.

In order to improve the estimate of the prior probability described above we ad-

ditionally estimate the cardiac motion between time frames and then transform the

prior probability using the resulting transformation T. In our case the cardiac motion

between two adjacent frames is obtained from non-rigid image registration using a free-

form deformation model based on cubic B-spline [193]. The details of this non-rigid

image registration approach have been presented in Section 4.4.

A series of registration steps is performed to register each time frame It to its sub-

sequent time frame It+1. The non-rigid registration algorithm optimizes correlation

coefficient (CC) as similarity measures between time frames as formulated in Equa-

tion 4.13. A gradient ascent optimization is used to maximise the similarity measure

SCC in order to find the optimal transformation. Using the resulting transformation the

prior probability information is propagated from each time frame to its subsequence

time frame.

Figure 5.2: Illustration of graph search algorithm with prior information.

Figure 5.2 illustrates how the coronary prior probability is incorporated to assist

the graph search. This procedure starts at end-diastolic phase where the coronaries

have good visibility and can be extracted without prior information. It is then repeated

until the extraction of the coronaries from all time frames.
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5.4 Coronary Motion Tracking Using the A* Graph

Search Algorithm with Prior Information

The multi-scale vessel enhancement in Section 5.1 only measures local contrast without

taking the average intensity of surrounding region into account. For example, bronchi

in CTA images appear to be surrounded by dark background regions with very high

contrast, thus bronchi are often enhanced in the vesselness image too. To identify and

highlight the intensity regions containing coronaries, a smooth windowing function

based on the Gaussian error function erf is constructed as in [152]:

W (x) =
1

2
(erf (b (I(x)− a1)) + 1) · (1− 1

2
(erf (b (I(x)− a2)) + 1)) (5.1)

Here a1 and a2 can either be in Hounsfield units or voxel intensity values. Due to

the lack of DICOM information for our 4D CTA sequences, there is no information

available for calculating the corresponding Hounsfield units from the voxel intensity

value. Thus, in this chapter, a1 is estimated as the lowest intensity value for a voxel

along the coronaries, a2 is the highest one. The parameter b controls the steepness

of the smoothing window. Figure 5.3 (a) shows an example profile of this intensity

transformation function. Transforming the image intensity through this Equation 5.1

essentially creates a weighting image that highlights the coronary region and the re-

gions within same intensity range while suppressing others.
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Figure 5.3: (a): An example of intensity transformation function given by Equation 5.1
with a1 = 1100, a2 = 1500 and b = 0.1. (b): The Gaussian probability profile with
σ = 1 and its corresponding multiplier (|ln(P (x))|)η for the cost image when η = 1.
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Using the intensity transformation function as formulated in Equation 5.1 and

combining it with the vesselness filter from Section 5.1, we define the cost CI, for each

voxel x as:

CI(x) =
1

V(x)(W (x))κ + ε
(5.2)

where V(x) is the maximal vesselness response of voxel x at the optimal scale σoptimal

as calculated via Equation 4.3 in Section 4.2. Parameter κ controls the influence of

W . ε is a small positive constant added in to avoid the singularities as the vesselness

value approaches zero. Figure 5.4 (e) shows an example of a cost image derived from

a vesselness image (c) and a weighting image (d) in Figure 5.4.

(a) (b) (c)

(d) (e) (f)

Figure 5.4: (a): A slice of a CTA image containing the distal part of the right coronary
artery; (b): Region of interest from the highlighted area in (a); (c): Vesselness image
of (b); (d): Weighting image of (b) computed by Equation 5.1; (e): Cost image of (b)
computed by Equation 5.2; (f): Extracted centreline marked by red crosses. Note only
part of the extracted centreline is visible in this 2D slice.

Given a pair of start node S and end node E for each vessel, in order to auto-

matically extract the coronaries from the CTA sequences with poor image quality,

we additionally add the prior information into the A* graph search algorithm. We
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evaluate the score g(x) as:

g(x) = g(x′) + CI(x) ∗ (|ln(P (x))|)η. (5.3)

where the parameter η defines the importance of prior information for the centreline

extraction in current frame. To initialize the cost function, g(x′) for the start node

S is set to be zero. P (x) is the prior probability for voxel x at the current time

frame obtained from section 5.3. Figure 5.3 (b) shows an example profile of P (x) and

|ln(P (x))| with σ = 1. As illustrated, the lower the probability P (x), the higher the

cost of including voxel x in the minimal cost path.

After adding a heuristic term h(x), the whole cost function for assessing each

candidate node x is defined as:

f(x) = g(x) + δh(x) (5.4)

For the centreline extraction from 4D CTA, δ is computed as the ratio of the minimum

cost of the vessel to the Euclidean distance of the start and end nodes in the previous

time frame. By using this heuristic term, the search space is greatly reduced and the

minimum cost path can be found in real-time. When node E is reached and it also has

lower value of f than any other candidates in the search queue, the minimum cost path

is reconstructed by tracing backwards to node S. However, if node E is to be reached

through a node with a higher value of f than other candidates in the search queue, the

A* algorithm will then backtrack to find the optimal solution, rather than continue to

make adjustments to approach a local minimum. This backtracking guarantees that

the A* graph search algorithm finds the minimum cost path, unlike the ridge traversal

algorithm that is unable to recover from the erroneous steps.

The graph-search based minimum cost path algorithm results in a discrete path

consisting of an ordered set of discrete locations (voxels). After extraction of the

path we estimate a B-spline representation of the centerline of the coronaries which

smoothly interpolates these voxel locations. By repeating this process for all other

time frames, the centrelines of RCA, LAD, and LCX are extracted from all phases of

the 4D CTA sequence.

Here the coronary motion model is estimated via the minimal-cost path extractions

from all time frames of the cardiac CTA sequence assisted by the prior information that

is derived from the non-rigid image registration. The coronary centrelines are extracted

as minimal-cost paths via A* graph search algorithm at end-diastolic phase. Patient-

specific phase-specific prior information of the coronary location and shape is formed as

in Section 5.3. Non-rigid registration based on B-spline free form deformation is used

to capture the motion between two adjacent time frames from the CTA sequence. This
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derived deformation is used to transform the prior model from one time frame in order

to predict the new position of coronary arteries for next time frame as in Section 5.3.

By doing so, this registration-assisted minimal cost path algorithm results in extracted

centrelines for all discrete time frames of the 4D CTA. Potentially a continuous motion

model of coronary can be formed by interpolating these centrelines in the temporal

domain.

5.5 Results and Evaluation

5.5.1 Coronary Artery Extraction

For evaluation, clinical 4D CTA data SM4DCTA and RB4DCTA were used in our

experiments. The details of the four test sequences are provided in Table 4.1. The

first test dataset (CT sequence I) has minor artefacts due to the reconstruction errors

when rapid cardiac motion occurs. The parameters for this dataset are selected as:

a1 = 1100 and a2 = 1500 for the intensity transformation function (Equation 5.1).

We have also tested the algorithm on another data set (CT sequence II) which is

characterized by more severe artefacts, in particular along the right coronary artery

and the left circumflex artery. The parameters a1 and a2 are chosen as 1000 and 1450

respectively. For CT sequence III, a1 = 1150 and a2 = 1550. As for CT sequence IV,

a1 = 1050 and a2 = 1400 are chosen. Parameter b is fixed as 0.1 for all data.

In all experiments, the parameters for graph search are fixed as κ = 1, η = 1. We

set the paramters α = 0.5, β = 0.5 whereas γ is chosen as the largest norm of the

eigenvalues across the whole image for the vesselness computation in Equation 2.5.

Here the choice of γ serves to rescale the vesselness response to an intensity range

that can easily be visualised. The vesselness response is computed at five different

scales, namely σ = 0.5, 1, 2, 4, 8mm. For detailed information on scale selection, we

refer to [135, 134] by Lindeberg et al. The maximum response V of the vesselness

filter at the corresponding optimal scale is computed for each voxel of the image

via Equation 4.3. The calculated vesselness image is used to facilitate the coronary

extraction and tracking.

For all data sets, prior coronary models were constructed for each frame to test

the probabilistic approach. A heuristic is also used to reduce the searching time. At

each time frame of the 4D CTA sequence, the centrelines of RCA, LAD and LCX are

semi-automatically extracted using the graph search algorithm with a single pair of

start and end nodes for each vessel branch as presented in Section 5.4.

Figure 5.5 and 5.6 show two examples of extracted coronary centrelines using A*

graph search approach to extract the minimal cost paths from both a region with good

contrast and no artefacts and a region with low contrast and stair-step artefacts. It
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can be observed that A* graph search method works robustly even when the image

quality deteriorates.

Figure 5.5: Good quality CTA image and extracted coronary artery centreline. Left:
CTA slice with the rectangle marking the region of interest. Right: extracted coronary
centreline marked with blue crosses from the CTA image on the left.

Figure 5.6: CTA image with stair-step artefacts and its extracted coronary artery
centreline. Left: CTA slice with the rectangle marking the region of interest. Right:
extracted coronary centreline from the region highlighted by the white box in the CTA
image.

5.5.2 Evaluation of the Coronary Motion Model

By semi-automatically tracking the coronaries in each time frame in CTA sequences,

the coronary motion can be estimated. As an example, the semi-automatically ex-

tracted coronary centrelines from one dynamic CTA sequence consisting of ten phases

are shown in Figure 5.7.
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Figure 5.7: Extracted coronary artery Centrelines from 4D CTA. The red lines de-
note the right coronary artery, the green lines for the left anterior descending and its
branches, and the blue lines for the left circumflex artery and its branches.

We performed experiments on four CTA sequences using the proposed approach

and evaluated the accuracy of the constructed motion model by assessing the error

between the manual annotations and the tracked coronary centrelines. The distance

measure defined in Equation 4.18 is used for this quantitative assessment, with U

corresponding to the manual annotation and M to the semi-automatically tracked

centreline at corresponding time frame. Figure 5.8 and Figure 5.9 show the motion

tracking results by using this measurement.
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Figure 5.8: Graph-based coronary motion tracking and evaluation in CTA sequence I
and II. The coronary displacement before tracking is measured as the distance between
the semi-automatically extracted centerline at end-diastole of the cardiac cycle and
all the other semi-automatic extractions in the remaining time frames. The error
after tracking is calculated as the distance between the manual and semi-automatic
extraction for each coronary artery in each of the ten frames.
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Figure 5.9: Graph-based coronary motion tracking and evaluation in CTA sequence
III and IV. The coronary displacement before tracking is measured as the distance
between the semi-automatically extracted centerline at end-diastole of the cardiac cycle
and all the other semi-automatic extractions in the remaining time frames. The error
after tracking is calculated as the distance between the manual and semi-automatic
extraction for each coronary artery in each of the ten frames.

5.6 Summary

In this chapter, we have presented another approach for patient-specific coronary artery

tracking and motion model construction from dynamic cardiac CTA images to as-

sist totally endoscopic coronary artery bypass surgery. To summarise the proposed
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method, beginning from the end-disatolic phase, the following steps are repeated until

coronaries are extracted in all time frames:

1. The coronary vessel centrelines are extracted as minimal cost paths via A* graph

search algorithm at time frame t;

2. The prior probability of a voxel in time frame t+1 to be part of the coronaries is

estimated as a Gaussian probability Pt distribution centred at the voxel locations

of the coronaries in time frame t.

3. Non-rigid registration is performed to align image It and image It+1 resulting in

deformation field Tt.

4. The coronary prior Pt created in step 2 for image It+1 is deformed to P
′
t according

to Tt to increase its accuracy for prediction. The deformed prior P
′
t is then used

to assist the centreline extraction in It+1 using A* graph search.

Finally, once the centrelines for RCA, LAD and LCX are obtained for all time frames

in the 4D sequence, a coronary motion model can be formed.

In order to assess the quality of semi-automatic extraction results, the distance

between the manual segmentations and semi-automatic extractions of the coronaries

in each time frame is evaluated quantitatively. The proposed method has been tested

on the clinical CTA datasets acquired from four subjects.

However, the A* graph search for vessel centreline extraction has one disadvantage:

The choice of heuristic term is a delicate matter. When the value of δh(x) is too high

as opposed to the score g(x), short cuts can occur in the resulting minimal cost paths.

In this case, the extracted centreline deviates from the real centreline by taking a

direct route from one voxel to another nonadjacent voxel as part of the vessel path, as

illustrated in Figure 5.10. This especially hinders the centreline delineation of vessel

segments with high curvature. However, if the heuristic term is chosen to be smaller

than necessary, the search space gets larger. Hence, more nodes will be evaluated and

the computational cost increases.
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(a) (b)

Figure 5.10: An example of correct vessel centreline and a wrong centreline caused by
short-cuts. (a): A CTA image region showing the left main artery and a short segment
of its LAD branch; (b): The red crosses mark the true vessel centreline extracted using
our proposed method, whereas the blue ones show the short cut in an extreme situation
for illustration purpose.
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Chapter 6

Template-based Coronary Motion

Tracking

In contrast to the work in Chapter 4 and Chapter 5, this chapter presents template-

based approaches for coronary artery motion modelling. The coronary motion mod-

elling methods presented in the previous chapters rely on coronary segmentation strate-

gies that utilise the intensity information of individual voxels without taking regional

information into account. The accuracy of the segmented centreline points can be af-

fected by the heterogeneous distribution of the contrast agent, the calcification within

part of the vessel wall or the short-cut effect illustrated in Figure 5.10. In this chapter,

two template based approaches are proposed to overcome these limitations, to improve

the robustness of coronary motion modelling algorithms and also reduce the amount

of user-interaction required. The proposed methods are:

• Coronary motion tracking using template matching and minimal cost path ex-

traction via the A* graph search algorithm. For each vessel at the end-diastolic

phase, a pair of start and end nodes are identified by the user and transformed

to all the other phases. Template matching is used to refine the positions of

the transformed start and end nodes at each phase. The coronary centrelines at

those phases are then extracted as minimal cost paths from the start node to

the end node.

• Coronary motion tracking by combining non-rigid registration and template

matching into one framework to reduce user-interaction and improve the ac-

curacy of the tracking. Coronary centrelines are first extracted as minimal cost

paths in the end-diastolic phase and transformed to the rest of the time frames

to provide a coarse prediction. At each time frame, the transformed centreline is

subsampled and template matching is performed at every voxel in the subsam-

pled centreline to refine the centre of the vessel. The refined centre points are
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then smoothly interpolated using B-splines to generate the final vessel centreline

for each frame.

These two approaches are presented and evaluated in Section 6.5 and 6.6 respectively.

Both methods are assessed against the non-rigid registration approach (similar to that

in Section 4.4) in terms of tracking accuracy. Prior to that, this chapter is organised

as follows:

1. Image pre-processing techniques used by both methods are presented in Sec-

tion 6.1. The procedure of utilising these pre-processing techniques is listed in

the end of Section 6.1.3.

2. As opposed to Section 5.4, we simplify the A* graph search to be performed

without prior information in Section 6.2 because of the improvement of CTA

image quality of the clinical data available for this part of the thesis.

3. A tubular-template model is adopted for the coronary extraction and tracking

in Section 6.3. Additionally, as in Section 6.3.3, the coronary lumen can be

segmented by combining the minimal cost path and template model matching

together.

6.1 Image Pre-processing

6.1.1 Histogram Equalisation and Its Variations

Contrast enhancement essentially aims to design a lookup table or mapping function

to allow the 1-to-1 intensity transform from an input image to an output image, with

the aim of increasing the contrast in the output image. This mapping function can be

either linear or non-linear. A well-known non-linear technique is histogram equalisation

(HE) which is based on the assumption that a good grey-level assignment scheme

should depend on the frequency distribution (histogram) of the image grey levels. As

the number of voxels in a certain class of grey levels increases, a wider range of the

available output grey levels should be assigned to this group of voxels. Consequently,

the histogram of the resulting image is approximately flat which indicates an optimal

distribution of the grey values. However, HE in its basic form can give a result that

is less informative about the structures of interest than its original image, because of

the following two reasons:

1. Large peaks in the original histogram can be caused by irrelevant structures (e.g.

background noise). In this case, HE mainly amplifies the image noise.
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2. The basic HE technique does not adapt to the local contrast requirements. Subtle

contrast differences can be entirely missed when the number of voxels falling in

a particular greylevel range is small, e.g., a small coronary vessel in large dark

background region.

Figure 6.1: CTA image (left) and its histogram (right) before HE.

Figure 6.2: CTA image after CLAHE using 8× 8× 8 contextual regions (left) and its
histogram (right).

To overcome these limitations of HE, contrast limited adaptive histogram equali-

sation (CLAHE) has been proposed [260]. CLAHE operates on small regions in the

image (referred to as tiles) rather than the entire image. Each tile’s contrast is first

enhanced. The neighbouring tiles are then combined using interpolation to eliminate

artificially induced boundaries. The contrast, especially in homogeneous areas, is lim-

ited by a contrast factor to avoid amplifying any noise that might be present in the
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image. A slice from a 3D CTA image is shown before and after CLAHE with its corre-

sponding histogram in Figure 6.1 and 6.2 respectively. As illustrated, vessel structures

exhibit better visibility in Figure 6.2, e.g., at the cross-section of the right coronary

artery marked by the yellow arrow and the cross-section of the left circumflex arteries

pointed to by the red arrow.

6.1.2 Automatic Thresholding

Otsu et al. [174] proposed to automatically perform histogram shape-based image

thresholding. The proposed method calculates the best threshold that separates an

image into foreground and background components by minimising the intraclass vari-

ance or equivalently maximising the interclass variance.

Let an image I have N voxels with grey levels from 1 to L. The number of voxels

with grey level l is denoted as fl. The probability of grey level l in image I is pl =
fl
N

.

In the case of separating the voxels of an image into two classes, the voxels are divided

into class C1 with grey levels [1, ..., t] and class C2 with grey levels [t + 1, ..., L]. The

grey level probability distributions for classes C1 and C2 are:

C1 :
p1

ω1(t)
, ...,

pt
ω1(t)

(6.1)

C2 :
pt+1

ω2(t)
, ...,

pL
ω2(t)

(6.2)

where ω1(t) =
t∑
l=1

pl and ω2(t) =
L∑

l=t+1

pl. From this definition, we can derive for any

threshold level t, ω1 + ω2 = 1. The mean intensity for classes C1 and C2 are given as:

µ1 =
t∑
l=1

lpl
ω1(t)

(6.3)

µ2 =
L∑

l=t+1

lpl
ω2(t)

(6.4)

The mean intensity µI for the whole image I can be calculated as:

µI = ω1µ1 + ω2µ2 (6.5)

The between-class variance σ2
B of the thresholded image I is formulated by Otsu

et al. [174] as:

σ2
B = ω1(µ1 − µI)2 + ω2(µ2 − µI)2. (6.6)

The optimal threshold value t∗ is chosen so that the between-class variance σ2
B is
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maximised.

In our work, this two-class method is extended to multiple class thresholding for

4D CTA sequences. For multiple class thresholding of image I, we assume there are

K − 1 threshold values, t1, t2, ..., tK−1. Using these thresholds, the image I can then

be divided into K classes, C1 for grey levels [1, ..., t1], C2 for grey levels [t1 + 1, ..., t2],

..., and CK for [tK−1 +1, ..., L]. The between-class variance for the K classes is defined

as:

σ2
B =

K∑
k=1

ωk(µk − µI)2 (6.7)

where ωk is the sum of the probabilities of grey levels belonging to the k-th class, µk is

the mean grey level of k-th class and µI is the mean intensity for the whole image I.

The optimal thresholds [t∗1, t
∗
2, ..., t

∗
K−1] are then found by maximising the between-class

variance σ2
B in Equation 6.7.

Similar to the original method [174], the extended method relies on a histogram of

the image intensity. This makes the method applicable to an image with any dimen-

sionality. Given the number of classes, the method exhaustively search for threshold

values that maximise the inter-class variance.

Figure 6.3: Histogram of a 4D CTA image sequence. The red bars show the optimal
three thresholds.

Figure 6.3 shows the histogram of one 4D CTA sequence containing 20 phases,

with the automatically obtained threshold values highlighted as red vertical bar to

separate the classes. For two phases and three slices from each phase, the CTA image

and the segmentations via thresholding are shown in Figure 6.4. The CTA image in

this example is segmented into four classes.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6.4: An example of segmentation via 4D thresholding. (a): a region of CTA
image at one time frame from a 4D sequence shown in three views after contrast
adjustment; (f): the same region of a CTA image at another time frame in three views
after contrast adjustment; (b) and (g): Background; (c) and (h): Fatty deposit; (d)
and (i): Tissue; (e) and (j): Blood and others. Each class is shown in red within the
yellow isolines.

6.1.3 Vessel Enhancement by Anisotropic Diffusion

Prior to the coronary artery segmentation, vessel enhancing diffusion [146] is adopted

to improve the visibility of the coronaries in CTA images. A detailed review on

anisotropic diffusion filtering is given in Section 2.2.3. Figure 6.5 shows the effect

of vessel enhancement diffusion on two regions of a CTA image. The images after
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diffusion display better smoothness along the vessels and exhibit less noise in the

background region. In our experiments on clinical CTA, the parameters for the diffu-

sion process have to be determined on a case-by-case basis, due to the large variation

of image quality of the 4D CTA data sets.

(a) (b)

(c) (d)

Figure 6.5: Examples of vessel enhancement diffusion. (a): A segment of the RCA in
a CTA image after contrast adjustment; (b): The resulting image of (a) after vessel
enhancement diffusion; (c): The left main coronary artery and LAD segments in CTA
image after contrast adjustment; (d): The resulting image of (c) after diffusion. The
yellow arrows point to calcifications. The red arrows point to narrowing in the arteries.

Before the coronary arteries are extracted, their visibility in the cardiac CTA image

sequences is enhanced by performing contrast limited adaptive histogram equalization

(Section 6.1.1). This improves the contrast and enhances the coronary arteries. Note

that this step is carried out for the entire 4D image sequence so that intensities in all

time frames are treated similarly and consistently.

Due to the ECG pulsing windows applied in the acquisition and reduced radiation

dose [239], the signal-to-noise ratio is varying in multiple-phase 4D CTA data sets. To

improve the image quality, 4D anisotropic diffusion (Section 6.1.3 ) is used to reduce

this noise and preserve the boundaries of the cardiac chambers and vessel structures.

After histogram equalization, we perform anisotropic diffusion [146] for the entire 4D
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image sequence so that neighbouring time frames influence the diffusion at the current

time frame.

Furthermore, to reduce the effect of the presence of inhomogeneous background

(e.g. air and tissue mixed region) or other irrelevant neighboring structures (e.g. bone

or metal implant), four thresholds [tbackground, tfat, ttissue, tblood] are selected automat-

ically by the multi-level thresholding as in Section 6.1.2 for each 4D data set. The

intensities of the background voxels (< ttissue) are increased to ttissue so that they match

the average myocardial intensity level. Voxels with intensities above the upper thresh-

old level (> tblood) that represents bone structures are assigned average myocardium

intensity value ttissue. One pair of thresholds ttissue and tblood is used for each 4D se-

quence.

(a) (b)

(c) (d)

Figure 6.6: Example of an CTA image before and after pre-processing. (a) and (c):
The original CTA image after contrast adjustment. (b) and (d): The post-processed
CTA images showing better visibility of the coronaries.

In summary, for each 4D CTA image sequence, the aforementioned three pre-
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processing procedures are performed to improve the visibility of the coronaries and

also eliminate interference from other irrelevant structures for the template matching

algorithm. Figure 6.6 shows an example of an original CTA image and its post-

processed image from two views.

6.2 Coronary Centreline Extraction via A* Graph

Search without Prior Information

The A* graph search approach with prior information in Chapter 5 was specially

designed in the early stage of this thesis for extracting coronary centrelines on CTA

images with severe artefacts. In the course of this PhD project, a new 4D CTA

acquisition protocol [239] has improved the image quality substantially. In particular,

two types of artefacts have been reduced: the low signal-to-noise ratio and the stair-

step artefacts. Thus, the newly acquired data allows the use of A* graph search

approach without using prior information.

In order to extract the minimal cost paths of the coronaries in CTA images using

A* graph search, similar to Chapter 5 we first perform a coarse segmentation of the

coronary arteries using a multi-scale Hessian-based vessel enhancement filter [72]. For a

3D image I(x), the vesselness response vσ(x) is computed based on the eigenvalues and

eigenvectors of the HessianHσ(x) at a given voxel x at scale σ. The vesselness response

is computed at a range of scales. The maximum response V(x) of the vesselness filter

with the corresponding optimal scale is obtained for each voxel of the image as in

Section 4.2. Once the vesselness V(x) at each voxel is computed, it can be used to

define a minimal cost path between the start and end nodes.

The minimal cost path between the start S and end node E is obtained using the

A* graph search algorithm [87] in the CTA image. The locations of the pair of nodes

S and E are specified interactively. A uni-directional graph search algorithm evaluates

the smallest cost g(x) from node S to current node x and the heuristic cost h(x) from

current node to node E to determine which voxel is to be selected as next path node.

The search algorithm finds the optimal path only if the heuristic underestimates the

true cost. The Euclidean distance from x to E is used to calculate the heuristic cost

in this chapter. We assess each candidate node by calculating the whole cost f(x) as:

f(x) = g(x′) +
1

V(x) + ε
+ δh(x). (6.8)

where x′ is the node preceding current node x. To initialize the cost function, g(x′)

is set to be zero for the start node S. A small positive constant ε is added in order to

avoid singularities. The parameter δ is estimated as the ratio of the minimum cost of
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the vessel to the Euclidean distance of the start and end nodes.

The heuristic term based on the Euclidean distance limits the search space and

ensures that the minimum cost path can be found in real-time. When node E is

reached, the minimum cost path is reconstructed by tracing backwards to node S

which results in an ordered set of discrete voxels. A B-spline representation of the

vessel centreline is created by smoothly interpolating these voxel locations.

6.3 Tubular Model for Template Matching

6.3.1 Tubular Model

A tubular model [76] is adopted to map a spatial coordinate x in Rn to the intensity

range [0, 1] through a template function T (x; r,x0,v). The template function defines

an ideal vessel segment centred at point x0 running in the direction v with radius r.

The template is assumed to have a circular cross-section. A vessel profile is needed

to model the image intensity variation in the cross-sectional plane perpendicular to

the vessel direction. A Gaussian vessel profile has been used previously in the lit-

erature [119]. The Gaussian profile fits well when the images have been smoothed,

but when detecting small vessels, large scale smoothing should be avoided in order to

preserve the high frequency vessel structures. In this case, a steeper vessel profile is

preferred as in [76]:

p(d2; r) =
rγ

(d2)γ/2 + rγ
, (6.9)

where d is the minimum distance from x in the template to the central axis running in

the direction of v through the centre point x0 as illustrated in Figure 6.7 (a) and shown

as a 2D example in Figure 6.8 (a). Parameter γ controls the size of the template. In

our experiments, we chose γ = 8. Parameter r is the radius of the tubular model as

in template function T (x; r,x0,v). Figure 6.7 (b) illustrates the vessel profile as the

solid line as opposed to the Gaussian profile in dotted line.

The vessel template function is then defined as the composition of the profile func-

tion p(d2; r) and the distance function d2(x; x0,v). After combining the two functions

together, the template function is formulated as:

T (x; r,x0,v) =
rγ(

‖x− x0‖2 − [(vT)(x− x0)]2
)γ/2

+ rγ
(6.10)

An example of a 2D vessel template is shown in Figure 6.8 (b).
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(a) (b)

Figure 6.7: Distance function and vessel profile [76]. (a): Distance d from a point x to
a straight line parameterized by the centre point x0 and direction v; (b): Vessel profile
p(d2; r) with r = 1 is shown as solid line, whereas an equivalent Gaussian profile is
depicted by dash-dotted line.

(a) (b)

Figure 6.8: Example of a 2D vessel template [76]. (a): Distance to a straight line
parameterized by a centre point x0 and direction v. (b): The 2D template obtained by
applying the vessel profile function parameterized by radius r to the distance function
as defined in Equation 6.10, with size 17 × 17, intensity range [0, 1]. The black dot
represents the centre, the bold line delineates the central axis of the vessel tube.

6.3.2 Template Fitting

Using this template model, the local image neighbourhood containing a vessel is mod-

elled [76] as:

I(x) = kT (x; r,x0,v) +m+ ε(x) (6.11)

where I(x) represents the intensity at voxel x. Parameters k and m denote the vessel

contrast and image background intensity respectively; ε(x) represents noise. The aim

of the template fitting procedure essentially is to find the optimal values for the inten-
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sity parameters (k and m) and template parameters (x0,v and r) in order to achieve

the maximal similarity between the local image region and the template model.

Given the image data I, template values T for all the voxels xi, i = 1, ..., n covered

in the template region and a diagonal weighting matrix W, the following weighted

least squares problem is then formulated to solve for the parameters r,x0,v, k,m:

min
r,x0,v,k,m

‖W(r,x0,v)[kT(r,x0,v) +m− I]‖2 (6.12)

where T is a n× 1 matrix by stacking the intensity value of each voxel in the template

T (xi; r,x0,v), i = 1, ..., n together, and I is a n×1 matrix with corresponding intensity

values from the image I at voxel locations xi, i = 1, ..., n.

This least-squares problem is linear for the intensity parameters (k,m) and nonlin-

ear for the template parameters (x0,v, r). The problem can be solved iteratively: the

linear parameters are estimated while keeping the nonlinear ones constant and vice

versa. The nonlinear parameters are found by using the Levenberg-Marquardt optimi-

sation [182], given an initial guess for the parameter values. Once the template is fitted

to the local image region, its parameter r approximates the radius of the local vessel

segment. Figure 6.9 and Figure 6.10 show two examples of fitting the template with

the local image region of right coronary artery in pre-processed and post-processed

CTA images.

(a) (b) (c) (d)

Figure 6.9: Illustration of template estimation and fitting for a post-processed CTA
image. (a) Initial estimation of the template and (b) its misalignment with the vessel
segment. The template (a) is shown as the yellow contour in (b). (c) The fitted
template after optimization and (d) its matching with the vessel segment.
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(a) (b) (c) (d)

Figure 6.10: Illustration of template estimation and fitting for an original CTA image.
(a) and (b): Initial estimation of the template marked by the yellow contour with the
green cross as the center and its misalignment with the vessel segment shown in two
different views. (c) and (d): The fitted template shown as the yellow contour and
centred at the green cross.

6.3.3 Coronary Lumen Segmentation Using Minimal Cost Path

and Tubular Model

Given the coronary artery centreline C extracted as a minimal cost path via the A*

graph search approach, the coronary lumen can be segmented by subsampling the

centreline C to a set of discrete points pi,i=1,...,N on the vessel and performing template

fitting at each point pi. At each location pi, the template fitting produces an updated

vessel centre point p′i, a direction vi and radius ri. A vascular tube representing

the coronary lumen is then generated by connecting the tubular segments through

interpolating the radius r and centre points p′i. Figure 6.11 shows an example of this

procedure.
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(a) (b)

Figure 6.11: Illustration of coronary lumen segmentation via template fitting. (a):
Subsampled coronary centrelines. (b): Segmented coronary lumen. The radius infor-
mation in mm is colour coded.

6.4 Coronary Motion Estimation Using Hierarchic

Non-rigid Image Registration

In this section, we present a method for tracking the coronaries through estimating

the cardiac motion, closely related to the method in Section 4.4. This method forms

the basis for the two template-based approaches for coronary motion tracking in this

chapter. The coronary motion model generated here is also quantitatively evaluated

against the two template-based coronary motion tracking approaches we present later

in Section 6.5 and Section 6.6.

The method here for tracking the coronaries temporally throughout the cardiac

CTA sequence is based on a series of hierarchical non-rigid image registrations: The

coronary motion is obtained by estimating cardiac motion via non-rigid image regis-

tration using a free-form deformation model based on cubic B-splines [193]. A series

of registration steps is performed to register each time frame to the reference image at

end-diastolic phase. For each frame we use the previous registration results as initial

estimation as shown in the middle row of Figure 6.12. Different from the registration

framework in Chapter 4 and 5, here each registration proceeds in a multi-resolution

fashion, starting with a control point spacing of 40mm, progressing to 20mm, 10mm,

and ending with a spacing of 5mm.

Prior to the acquisition of 4D coronary CTA images, a contrast agent is routinely

injected into the patient’s body for imaging the vessel. As the contrast agent flows

within the vessels and gets diluted, the distribution of the contrast material becomes

heterogeneous spatially and temporally. This causes variation in the intensity values
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of the vessels from one time frame to the other. In this case, an identity or linear

relationship, as for metric SSSD (Equation 4.12) and SCC (Equation 4.13) respectively,

cannot be assumed between intensities of two adjacent CTA images. However, the

similarity between two CTA images can be be more accurately measured by entropy-

based methods that take the information of the whole image into account. Here

the non-rigid registration algorithm uses normalised mutual information [214] as the

similarity measure between time frames. A gradient descent optimization is used to

find the optimal transformation. The derived deformations from coarse level are used

to initialize the finer level of registration.

The extracted coronary artery centrelines in the end-diastolic phase are mapped

to the other cardiac phases by applying the finest deformation obtained from the reg-

istration step as illustrated in the bottom row of Figure 6.12. The derived centerlines

are then compared with the segmented centerlines from minimal cost path approach at

each time frame to measure the accuracy of the multi-resolution non-rigid registration

based motion modelling.

I ... ...I II0 r!1I r r+1 r+2 N!1Ir!2I
r+1,rTTr!1,r

Tr!2,r Tr+2,r

... ... ... ...

T0,r TN!1,r
Figure 6.12: Illustration of coronary motion tracking using a non-rigid registration
approach. The bottom row shows the extracted coronary centerlines from end-diastolic
phase Ir (in the middle) and the transformed centerlines for I0 and IN−1 in the left
and right. Right coronary artery is shown in red, left anterior descending artery in
green, left circumflex artery in blue.
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6.5 Coronary Motion Tracking Using Graph Search

and Template Matching

In this section, we propose an approach that is based on a template fitting and tracking

algorithm which automatically identifies the start and end points of each vessel in every

time frame. Once the start and end points have been identified, the vessel is extracted

as the minimal cost path between both points. This newly proposed method simplifies

the 4D motion modelling of coronaries significantly. After performing tests on clinical

4D CTA data, the results of this proposed approach are quantitatively compared to

those from two other methods:

1. Manual motion tracking of the coronaries by extracting the coronary centrelines

in all time frames using the graph search algorithm without prior information as

in Section 6.2. The start and end nodes are manually identified for the coronary

centreline extraction in all CTA images.

2. A hierarchic non-rigid registration based approach as presented in Section 6.4.

6.5.1 Methodology

We first use the 4D contrast limited adaptive histogram equalization to improve the

image contrast for each CTA sequence (Section 6.1.1), followed by 4D vessel enhance-

ment anisotropic diffusion to reduce the noise and enhance the vessel structures (Sec-

tion 6.1.3). Lastly, for the template matching algorithm, the minimum and maximum

thresholds are selected automatically by 4D multi-level thresholding (Section 6.1.2).

Using the Euclidean distance as the heuristic term, A* graph search is performed at

each phase in each dataset to extract the coronaries, based on user-supplied start and

end points for each vessel as in Section 6.2. The extracted centrelines form the manual

motion model of the coronaries. We then estimate the coronary motion automati-

cally using the hierarchical non-rigid registration of the CTA sequence (Section 6.4).

By transforming the end-diastolic coronary centrelines to the rest of the time frames

according to the resulting deformation information, a coronary motion model is gener-

ated based on the non-rigid registration of CTA images. Last, but most importantly,

we propose a new coronary motion tracking approach combining graph search and

template matching. Given a pair of start and end nodes in end-diastolic, both nodes

are transformed to all other time frames according to the deformation information

obtained in Section 6.4 to predict the locations of start and end nodes at those time

frames. Template estimation and fitting is used to refine the predicted start and end

points of the coronaries. Combined with the graph search, this enables the auto-

matic identification of seed points in each vessel and also enables the utilisation of the
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accurate extraction of vessel paths based on a minimal cost graph search approach.

We then compare this template-based approach with the non-rigid registration one

(Section 6.4) by performing a non-parametric Kruskal-Wallis test [121].

The new approach for tracking the coronaries temporally throughout the cardiac

CTA sequence is based on template localization and fitting. A tubular segment model

as presented in Section 6.3 is utilised here for this purpose.

Figure 6.13: Post-processed CTA image and its extracted coronary centrelines. (a):
Post-processed end-diastolic image; (b): Its extracted coronary centerlines. The right
coronary artery is shown in red, the left anterior descending artery in green, and the
left circumflex artery in blue.

Figure 6.14: Illustration of template estimation and fitting. (a) Initial estimation of
the template and (b) its mismatch with the vessel segment. The template (a) is shown
as yellow contour; (c) fitted template after optimization and (d) its match with the
vessel segment.

Given the coronary centrelines extracted in the end-diastolic time frame as shown

in Figure 6.13, the start and end points are selected from each vessel centerline as

the estimated locations of the centers of the vessel templates. For each of the start
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and end points, the optimal vessel template together with its refined centre location,

the corresponding local contrast and local mean intensity parameters are obtained by

solving the weighted least squared problem using Levenberg-Marquardt algorithm [77]

in the end-diastolic time frame. We then transform the center location x0 of each

template to its new estimated position x′0 in the adjacent time frame by using the

deformation information obtained in Section 6.4. The direction and radius estimates

for each template at the previous time frame are used to initialize the correspond-

ing template at current time frame. The template parameters are optimized again

using Levenberg-Marquardt optimization. After this the minimal cost path for this

time frame is determined between the updated template locations. This procedure is

repeated in a pair-wise fashion until the centerlines in all time frames are obtained.

We then quantitatively measure the accuracy of these centerlines against the manual

tracking results and their difference from the motion model created from Section 6.4.

To illustrate the procedure, a post-processed image is shown in Figure 6.13, to-

gether with the extracted coronary arteries at the end-diastolic phase for this data

set. Start point Sr and end point Er are selected from the right coronary artery in the

end-diastolic reference image Ir. Templates are then constructed at these two points to

fit with the vessel segments in image Ir which results in an updated pair of template

centres. The new pair of template centres created from points Sr and Er are then

transformed to next time frame Ir+1 in order to construct the initial templates. Then

they are fitted to the local region of the image Ir+1. For illustration, Figure 6.14 shows

the distal of the right coronary artery in image Ir+1. It also shows the initial template

position and the template position after matching with the local image region.

6.5.2 Results and Evaluation

To assess the performance of the two motion modelling strategies we have performed

experiments on five 4D cardiac CTA sequences denoted as EMC4DCTA1. The 4D

CTA images were acquired using Somatom Sensation 64 and Definition CT scanners

in Erasmus MC, University Medical Center Rotterdam, The Netherlands. The protocol

for acquiring the 4D data sets EMC4DCTA1 is published in [239]. For each sequence, 20

phases are reconstructed for the cardiac cycle according to the recorded ECG signals.

The five CTA image sequences have various image dimensions ranging from 256 × 256

× 89 voxels to 256 × 256 × 188 voxels. Three datasets have voxel dimensions of 0.7

× 0.7 × 0.8 mm3. The other two datasets have voxel dimensions of 0.64 × 0.64 × 1.5

mm3. All datasets have various degrees of mild artifacts that affect the segmentation

and registration procedure. In particular the fast motion of the heart in some time

frames can lead to blurring or ghosting artifacts, e.g., a ghosting artery occurs along

the actual right coronary artery in Figure 6.14 (b).
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Figure 6.15: The total coronary displacement (LAD, LCX, RCA) is shown in column
(a). The residual coronary displacement after non-rigid registration is shown in column
(b) and after template-based tracking is shown in column (c). The results show that
the template-based tracking is able to model the coronary motion best.
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In order to have a gold standard to evaluate the two different motion modelling

approaches, the left anterior descending artery (LAD), left circumflex artery (LCX)

and right coronary artery (RCA) are extracted as minimal cost paths using the A*

graph search algorithm without prior information from five CTA sequences, P1, P2,

P3, P4, and P5. In all five patients, the start and end points of the vessels have been

identified manually and the results of the minimal cost path extraction has been judged

as correct by two obervers. The results of this are compared with the motion estimates

of the LAD, LCX and RCA as provided by the non-rigid registration approach from

Section 6.4 and template matching based approach as in Section 6.5.1. To measure

the agreement between the gold standard and the motion tracking approaches, the

distance measure formulated in Equation 4.18 is used to quantify the coronary motion

tracking errors. The results are shown in Figure 6.15. The initial displacement of each

coronary artery is computed as the distance between the centerline at end-diastole

phase and the centerline at each other phase and is shown in the first column (a).

The second column (b) shows the tracking error using the non-rigid registration based

approach. It is measured as the distance between centrelines estimated via non-rigid

registration and the gold standard for each phase. The third column (c) shows the

tracking error using the template matching approach. Again, it is measured as the

distance between centerlines estimated via template fitting and the gold standard for

each phase.

To measure whether the errors are significantly reduced using the template fitting

method compared to the non-rigid registration method, a non-parametric Kruskal-

Wallis test is performed to compare the errors obtained for each vessel and for each

subject using these two methods. The results of this analysis is shown in Table 6.1 . We

consider that the errors are significantly smaller using template-based approach when

p-value of the test is below 0.05. From Figure 6.15 and Table 6.1, we can conclude that

the proposed graph search and template fitting approach outperformed the non-rigid

registration-based approach in terms of accuracy, while the latter only compensate for

part of the deformation.

Table 6.1: P-values of Kruskal Wallis test on the errors

P1 P2 P3 P4 P5

LAD 0.44 0.0093 1.7e-06 1.2e-07 0.0018
LCX 0.43 0.0015 1.2e-04 1.4e-06 1.7e-05
RCA 0.049 2.6e-05 2.1e-07 6.2e-07 1.8e-07
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6.6 Coronary Motion Tracking Using Non-rigid Reg-

istration and Template Matching

Prior to the coronary extraction and motion tracking, pre-processing is performed

for each 4D CTA sequence using the same methods as in Section 6.5.1. Through

combining the non-rigid registration and template matching techniques together, the

proposed coronary motion tracking approach here consists of three steps:

• Firstly, the coronary arteries are extracted in the end-diastolic time frame using

a minimal cost path approach. To achieve this, the start and end points of the

coronaries are identified interactively and the minimal cost path between the

start and end points is computed using A* graph search algorithm.

• Secondly, the cardiac motion is estimated throughout the cardiac cycle by using

a non-rigid image registration technique based on a free-form B-spline transfor-

mation model and maximization of normalized mutual information (Section 6.4).

• Finally, coronary arteries are tracked automatically through all other phases

of the cardiac cycle. This is estimated by deforming the extracted coronaries

at end-diastole to all other time frames according the motion field acquired in

second step. The estimated coronary centerlines are then refined by template

matching algorithm to improve the accuracy.

As in Section 6.5, here we also compare the proposed approach with two alternative

approaches: The first approach is based on the minimal cost path extraction of the

coronaries with start and end points manually identified in each time frame while

the second approach is based on propagating the extracted coronaries from the end-

diastolic time frame to other time frames using image-based non-rigid registration

only.

6.6.1 Coronary Motion Tracking Using Non-rigid Registra-

tion and Template Fitting

Combined with the deformation information obtained via the non-rigid registration as

shown in Figure 6.12, the method here refines the tracking of the coronaries through-

out the cardiac CTA sequence based on template localization and fitting. A tubular

segment model [77, 76] is adopted for this purpose (Section 6.3.3).
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(a) (b)

(c) (d)

Figure 6.16: Combination of non-rigid deformation and template matching. (b) shows
the resampled coronary branches extracted at end-disatole. (d) shows the vessel lumen
by chaining the fitted templates together at end-diastole. (a) shows estimation for the
coronary at end-systole. (c) is coronary artery lumen obtained by fitting the templates
with corresponding local region in end-systolic CTA image. The varying radii (mm)
are represented by different colors as in the legend.

First, an equidistant sample of vessel points from each extracted coronary centerline

via A* graph search without using prior information in Section 6.2 at end-diastolic

phase is chosen for refining the coronary segmentation as shown in Figure 6.16 (b).

Each point from these samples is used as the initial center for the template fitting

procedure. For each point, the optimal vessel template together with the corresponding

local contrast and local mean intensity parameters are obtained by solving the weighted

least squared problem using Levenberg-Marquardt algorithm [76] in the end-diastolic

time frame. This yields a more detailed coronary segmentation with center location,

radius, local contrast and mean intensity parameters for each template. By chaining

these templates together, we obtain the coronary lumen at end-diastole as shown in

Figure 6.16 (d).

Given the coronary centrelines extracted in the end-diastolic time frame as shown

in the middle bottom of Figure 6.12, we can estimate the coronary centerline positions

for other time frames by using the B-spline based free-form deformation information
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obtained using the same approach as in Section 6.4 to transform the end-diastolic ex-

tractions. An equidistant sample of vessel points are chosen from each vessel centerline

at each non-end diastolic phase as the estimated locations of the centers of the vessel

templates. The template fitting algorithm is performed on all these vessel points to

provide an accurate match of the template with the local region. To achieve this, the

template parameters are optimized again using Levenberg-Marquardt optimization.

After this, the new discrete center points and their corresponding radii for each vessel

are interpolated using B-spline. The coronary lumen is represented with a tubular

mesh. This procedure is repeated in pair-wise fashion until the coronary lumen in

all time frames is obtained. We then quantitatively measure the accuracy of these

coronary lumen centerlines by assuming the minimal cost centerlines obtained via A*

graph search as “ground truth”. We also compare their difference from the estimated

centerlines using only non-rigid registration method as in Section 6.4.

To illustrate the procedure, segmented coronary lumen from two phases are shown

in Figure 6.16, together with the resampled minimal cost paths which are used as

initialization for template matching. For illustration, in Figure 6.17, a right coronary

artery segment is randomly chosen from one image. It shows template matching

improves the accuracy of the estimated centerlines.

Figure 6.17: Illustration of template position estimation and fitting. (a): A small
region of CTA image containing right coronary artery. (b): After pre-processing.
(c): The estimated right coronary artery position using non-rigid registration. Blue
cross shows the estimated vessel centerlines. (d): The vessel centerlines after template
fitting. The discontinuity of the centreline appears because only one slice is shown in
the 2D representation.

6.6.2 Results and Evaluation

To assess the performance of the proposed motion tracking strategy we have per-

formed experiments on eight cardiac CTA sequences. We denote these eight datasets

as EMC4DCTA2. Same as for dataset EMC4DCTA1, they are also acquired using the

same protocol from the Somatom Sensation 64 and Definition CT scanners in Erasmus
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MC, University Medical Center Rotterdam, The Netherlands. Each CTA sequence has

twenty phases with various image dimensions ranging from 256 × 256 × 89 to 512 ×
512 × 335 voxels. The voxel dimensions varies from 0.4 × 0.4 × 0.5 mm3 to 0.7 ×
0.7 × 1.5 mm3. All datasets have varying image quality throughout the cardiac cycle,

mild stair-step due to reconstruction error, and ghosting artefacts occurring due to

the rapid cardiac motion which affect the segmentation and registration procedure.

In order to have a gold standard to evaluate the two different motion modelling

approaches, the LAD, LCX and RCA are extracted using the graph search algorithm

(Section 6.2) from eight CTA sequences (P1, P2, P3, P4, P5, P6, P7 and P8). In all

eight patients, the start and end points of the vessels have been identified manually and

the results of the minimal cost path extraction have been judged as correctly falling

inside the vessel lumen. However, the accuracy of these extractions are restricted by

the shortcut effect as shown in [129]. The results are compared with motion estimates

of the LAD, LCX and RCA as obtained using the non-rigid registration and template

matching based approaches. Quantitative analysis is performed using measure defined

in Equation 4.18.

The evaluation results are shown in Figure 6.18. The total displacement of each

coronary artery shown in the first column (a) is computed as the distance between

the minimal cost centerline at end-diastole phase and the minimal cost centerline at

each other phase. The second column (b) shows the tracking error from purely non-

rigid registration based approach. It is measured as the distance between centrelines

estimated via non-rigid registration and the gold standard for each phase. The third

column (c) shows the tracking error using the registration and template matching

combined approach. It is measured as the distance between centrelines estimated via

the proposed method and the gold standard for each phase.

We compare the accuracy of the non-rigid registration based tracking method with

the proposed approach in Table 6.2. The average motion is calculated as the average

of the total displacements of each coronary artery for each patient. The row “Mean

error 1” shows the average residual motion for the non-rigid registration based tracking

method. The row “Mean error 2” shows the average residual motion for the non-rigid

registration and template-matching based approach.
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Figure 6.18: Comparison of coronary motion tracking results. The total coronary
displacement (LAD, LCX, RCA) is shown in column (a). The residual coronary dis-
placement after non-rigid registration is shown in column (b) and after the combined
registration and template-based tracking is shown in column (c). The results show that
the proposed tracking method is able to model the coronary motion with acceptable
errors (under 2 voxels) and in most cases it performed better.
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Table 6.2: Average coronary motion and mean errors of motion tracking

LAD

P1 P2 P3 P4 P5 P6 P7 P8

Average Motion (mm) 2.39 2.40 2.53 2.12 2.06 3.26 3.29 2.43
Mean error 1 (mm) 0.74 0.73 0.90 0.72 0.79 1.23 2.01 1.15
Mean error 2 (mm) 0.97 1.27 1.14 0.90 1.27 1.21 0.81 0.84

LCX

P1 P2 P3 P4 P5 P6 P7 P8

Average Motion (mm) 3.41 3.23 4.42 3.28 3.10 4.31 4.47 3.92
Mean error 1 (mm) 0.92 1.81 1.77 0.90 1.31 1.61 1.89 1.45
Mean error 2 (mm) 0.90 1.19 1.28 0.84 1.12 0.72 1.21 0.89

RCA

P1 P2 P3 P4 P5 P6 P7 P8

Average Motion (mm) 5.53 6.83 5.33 8.14 4.89 6.62 5.44 5.96
Mean error 1 (mm) 2.35 2.62 2.19 2.83 1.90 2.27 3.23 2.68
Mean error 2 (mm) 1.19 1.10 0.95 0.79 1.26 1.29 1.19 0.94

We also consider that the motion tracking is successful when the distance between

modeled coronary and the minimal cost path is under 1.4mm which is twice of the

voxel size for most test data sets. By considering this error threshold for right coronary

artery motion modelling, 92% of vessel tracking are performed successfully by using

our proposed method, compared to 46% when using the purely non-rigid registration

approach. By choosing 2.8mm as threshold, the right coronary tracking is successful in

our method while the non-rigid registration approach produces 72% success rate. From

Figure 6.18 and Table 6.2, we can conclude that combining the non-rigid registration

with the template matching together improve the motion tracking accuracy in most

cases, particularly in the frames when the rapid cardiac motion occurs. The variance

of tracking error is greatly reduced by using the proposed method.

In this section, a method combining the template matching and non-rigid registra-

tion algorithm is presented for patient-specific coronary artery motion modelling from

cardiac CTA sequences. It has been tested on eight clinical CTA datasets and proved

to be more robust than purely non-rigid registration approach. The limitation of this

study is the lack of manual annotated coronary centerlines and lumen for the CTA

images. By assuming the semi-automatically extracted minimal cost paths as “ground

truth”, the accuracy of the proposed tracking method is potentially under-estimated

particularly for LAD and LCX. For more accurate evaluation, manual annotations are

needed. However, it is very time-consuming and laborious to obtain manual annota-

tions of the coronaries. More importantly, in this thesis, we focus more on the motion
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tracking of the coronaries from 4D pre-operative CTA scans. The vesselness based

graph search algorithm provides us reliable and fast coronary artery extractions that

can be used as “ground truth”.

6.7 Summary

Two tubular-model based approaches are presented in this chapter for modelling the

coronary motion from 4D CTA. Each method is quantitatively evaluated using clinical

data. From the quantitative assessments we have performed, both approaches pro-

posed here are shown to be more robust and accurate than the approach relying on

non-rigid registration solely. Compared with the graph search based coronary motion

construction method in Chapter 5, far fewer manual annotations of the start and end

nodes for the graph search are required here. Using the newly proposed template-

based approaches, the coronary motion tracking achieves a satisfactory (Section 6.6)

or similar level of accuracy (Section 6.5) compared to manual tracking.
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Chapter 7

Atlas-based Coronary Motion

Tracking

In this chapter, we present an atlas based coronary motion modelling algorithm. We

propose a method for constructing a probabilistic atlas of the coronary arteries in

Section 7.1. The constructed probabilistic atlas of the coronaries is then used in

Section 7.2 for a new coronary lumen segmentation method. In Section 7.3, a novel

coronary motion modelling method is proposed based on the probabilistic atlas and

multi-level multi-channel diffeomorphic registration. Finally, the proposed method is

evaluated in 4D CTA sequences from eight subjects in Section 7.4.

A detailed review on coronary motion modelling has been presented in Chapter 3.

The most related approach is the one by Metz et al. [151] which proposes an approach

for tracking the coronary motion from cardiac CTA. In their approach, the coronar-

ies are manually or semi-automatically identified at one time frame and then tracked

throughout the cardiac cycle using non-rigid registration of the multi-phase cardiac

CTA images. The restriction of this approach is that highly localized motion of the

coronaries cannot be fully recovered by the motion tracking of the entire heart, partic-

ularly for right coronary artery as shown in Figure 2 and Figure 3 in [151]. The same

conclusion can be drawn from the results of our experiments as shown in Figure 6.15

and Figure 6.18.

Different from the approaches in previous chapters and [151], the coronary motion

tracking in this chapter is achieved by forming a probabilistic atlas of the coronaries

and using a multi-channel extension of the Large Deformation Diffeomorphic Metric

Mapping (LDDMM) registration method [20, 40]. This newly proposed multi-level

multi-channel diffeomorphic registration here can more accurately capture the rapid

motion of right coronary artery compared to other non-rigid registration techniques.

The formalism of LDDMM makes large diffeomorphic (smooth and invertible)

transformations possible when registering two shapes. Contrary to alternative meth-
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ods [11, 227], the LDDMM formalism is designed to compute shape deformations that

are geodesics. An optimal flow of deformations is estimated between the source and

target images according to a regularization metric and a similarity measure. Min-

imising the resulting objective function yields the optimal path between the source

and target images. In this context and for coronary motion tracking from CTA se-

quences, the registration of the grey level images does not capture accurately the

highly localized coronary motion which is surrounded by large anatomical structures.

The LDDMM method in [20] has previously been extended to treat vector-valued,

tensor-valued images [36] and multi-channel images [227].

The methodological contribution of this chapter is to use multi-channel registration,

where each channel contains a different level of description of the registered shapes: (1)

original images, (2) vesselness images after the enhancement using tensor voting and

(3) highly smoothed original images. To differentiate from the multi-channel method

in [227], we denote our approach as Multi Level- or ML-LDDMM. Using vesselness

response of the coronary artery region as channel 2 contributes to matching the vessels

over long distance while limiting the influence from the surrounding cardiac structures.

7.1 Coronary Artery Atlas Construction

Chillet et al. [47] presented a method for forming brain and liver vascular atlases using

a vessel-to-image affine registration method. The proposed atlas construction process

includes four main steps:

• The vessel centrelines are extracted from the images using the segmentation

method in [12];

• One subject’s vascular model is chosen as a template and its vascular distance

map (DM) is computed;

• All other extracted vascular models are registered with the DM template using

a vascular model-to-image affine registration method;

• The DM images are computed for all aligned vascular models and used to cal-

culate the mean and variance images of the DM images in order to form the

vascular atlas.

We propose an alternative approach to build a probabilistic atlas of the coronary

arteries using image-to-image affine registration. A group of 26 CTA images we used

for this purpose are denoted as EMC3DCTA that are collected at Erasmus MC, Uni-

versity Medical Center Rotterdam, The Netherlands. The images were acquired from

26 subjects with Siemens Somatom Sensation 64 and Definition scanners, and re-

constructed at end-diastolic phase using retrospective ECG gating. The sizes of the
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reconstructed CTA images vary from 512×512×268 voxels to 512×512×346 voxels,

and the voxel dimensions vary from 0.27× 0.27× 0.40 mm3 to 0.37× 0.37× 0.40 mm3.

The coronary artery centrelines are manually annotated in all 26 CTA images. After

affine alignment, the centrelines are shown in Figure 7.1.

Figure 7.1: Coronary artery centrelines from 26 subjects after affine alignment. Red:
Right coronary artery; Green: Left anterior descending coronary artery; Blue: Left
circumflex artery.

A 3D probabilistic atlas of the coronaries A containing LAD, LCX and RCA is

constructed from these manually marked centrelines. The CTA scan of patient i is

denoted as Ii and its corresponding centreline as Ci with 1 ≤ i ≤ n, n = 26. The atlas

construction consists of four steps:

1. One subject’s CTA scan In is chosen as reference image R randomly. The rest

of the CTA scans (I1, ..., In−1) are chosen as source image and affinely aligned

with R.

2. The manually segmented centrelines C1, ..., Cn−1 are transformed according to the

resulting affine transformation T1, ...,Tn−1 in order to match with the centreline

Cn from the reference subject.

3. All the transformed centrelines CT1 , ..., CTn−1 and the corresponding reference

centreline Cn are then modelled as a tubular structure with a pre-defined radius
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and subsequently blurred with a Gaussian kernel. By doing so, a probabilistic

image is created for each transformed centreline CTi
where the vessel is modelled

using a Gaussian probability density function which is centred at the vessel

centreline and whose standard deviation is proportional to the radius of the

vessel.

4. For each coronary artery, its probabilistic atlas is created by averaging the cor-

responding probabilistic images from the 26 subjects.

The process is repeated for all three coronary arteries in order to create a probabilistic

atlas for each artery. By combining the three atlases together, a probabilistic atlas of

the coronary artery tree A is formed as shown in Figure 7.2.

By affine alignment of the reference image R used for creating the probabilistic

atlas and the end-diastolic phase (ED) of a new patient CTA sequence, this atlas A is

affinely registered to the patient dataset to create a patient-specific probabilistic atlas

of the coronaries MED. For each patient CTA sequence, the 3D atlas MED can then

be warped to create a 4D atlas by temporal non-rigid registration [193] of the CTA

sequence. Each patient-specific, phase-specific coronary atlas is then used to select the

coronary artery region from its corresponding vessel response image and incorporated

in the vascular segmentation and registration procedure.
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Figure 7.2: Surface rendering with multiple iso-probability contours of the probabilistic
atlas of the coronaries from two views. Red indicates a high probability of a coronary
at a voxel whereas blue indicates a low probability.
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7.2 Atlas-based Coronary Lumen Segmentation

The coronary lumen can be segmented using the constructed coronary atlas in Sec-

tion 7.1. The segmentation using this approach consists of the following steps:

1. Affine registration of the atlas reference image R as in Section 7.1 and the end-

diastolic CTA image to be segmented I. The derived transformation is denoted

as Taffine;

2. Compute the multi-scale vesselness image Iv as in Section 4.2 from image I after

vessel enhancement diffusion (Section 6.1.3);

3. Transform the coronary atlas A for one coronary branch from Section 7.1 ac-

cording to the derived deformation Taffine in step 1 to create the patient-specific

coronary atlas M for the corresponding branch in image I;

4. Use the atlas M from step 3 to select the coronary region from Iv. The vessel

lumen of this branch is chosen as the largest connected component from the

selected region of the vesselness image Iv.

5. Repeat step 3 & 4 for other coronary branches. Finally, the coronary lumen tree

is obtained for image I by combining the segmented branches.

This method extracts the coronary lumen fully automatically. However, it requires

high image quality and only works for CTA image with good contrast and few artefacts.

Figure 7.3 (d) shows the segmented coronary lumen from one CTA scan at ED phase.
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(a) (b)

(c) (d)

Figure 7.3: Automatically segmented coronary lumen from the end-diastolic phase of
one CTA sequence. (a), (b) and (c): The CTA image is shown in three views. (d):
The segmented coronary lumen.

7.3 Coronary Motion Estimation Using a Proba-

bilistic Atlas and Diffeomorphic Registration

In this section, a method for coronary artery motion estimation from 4D CTA is

presented using a probabilistic atlas of the coronaries and diffeomorphic registration.

The proposed approach consists of three steps:

1. Prior to motion tracking, a probabilistic atlas of the coronaries is constructed

from manual segmentations of the CTA scans of a number of subjects (See Sec-
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tion 7.1).

2. The vesselness response image is calculated and enhanced for end-diastolic and

end-systolic CTA images in each 4D sequence.

3. A special purpose registration framework is designed for tracking the highly

localized coronary motion. It combines the probabilistic atlas of the coronaries,

the intensity information from the CTA image and the corresponding vesselness

image to fully automate the coronary motion tracking procedure and improve

its accuracy.

We perform pairwise 3D registration of cardiac time frames by using a multi-channel

implementation of the Large Deformation Diffeomorphic Metric Mapping (LDDMM)

framework [20], where each channel contains complementary information about the

coronary arteries. For validation, we compare the automatically tracked coronaries

from end-systole to end-diastole with manual annotations at end-diastolic phase for

each subject. The advantages of the proposed approach are two-fold:

• It requires less manual pre-processing, since no manual segmentation or user-

interaction is required for patient-specific coronary motion modelling. Also, same

as the approaches we proposed in previous chapters, no 3D reconstruction from

X-ray images is required in order to perform 3D coronary motion tracking as

in [206, 207].

• By combining the greylevel CTA image, its vesselness image and the probabilistic

atlas of the coronaries in a unified registration framework, this approach provides

a robust estimation of the coronary motion in 4D CTA.

7.3.1 Framework of LDDMM Algorithm with Multiple Chan-

nels

The probabilistic atlas of the coronaries A constructed in Section 7.1 is used here to

assist the registration. By affine registration of the reference image R used for cre-

ating the probabilistic atlas and the end-diastolic phase of a new CTA sequence, a

patient-specific probabilistic atlas of the coronaries MED is created. The 3D atlas

MED is then deformed to create an atlasMES corresponding to end-systolic phase by

non-rigid registration [193] of the CTA sequence. The patient-specific coronary masks

MED and MES are then used to select the coronary artery regions from their corre-

sponding vesselness images and incorporated in the multi-level LDDMM registration.
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Figure 7.4: Overview of the proposed coronary motion estimation method.

By using a patient-specific coronary atlas MES as a mask to select the region

of interest from its vesselness image, tensor voting and extracting the largest con-

nected components, the coronary lumen is segmented from the post-processed vessel-

ness response image at end-systolic phase for each 4D CTA sequence. The segmented

coronary lumen is then transformed to the end-diastolic time frame according to the

deformation estimated from the ML-LDDMM registration. The estimated coronary

lumen at end-diastolic is then compared to manual tracking of the coronaries at end-

diastolic phase. Figure 7.4 shows an overview and illustrates the connections between

the components in the proposed algorithm.

7.3.2 Tensor Voting

Segmenting the vessels directly from the Hessian-based vesselness images does not

provide satisfactory results when the CTA image quality is low because of various

reasons mentioned in Section 4.6. To alleviate the negative effects caused by the low

quality of CTA images, we propose to use a post-processing step based on tensor

voting [84, 102, 187] to enhance the extraction of the coronary vessels. Tensor voting

was initially developed to reconstruct shapes from point clouds but was also shown

to efficiently recover volumes, surfaces and curves from noisy images. In our context,

the tensor voting is adapted to fill discontinuities in the vesselness image as shown in

Figure 7.5.

Consider a 3D vesselness image Iv ∈ Ω. We associate a tensor-valued image TV

∈ Ω with Iv. Each voxel of the TV is a 3 × 3 tensor ( or matrix) that allows local

communication between the noisy data of Iv. Using the framework of [187], each

non-zero voxel xi of Iv is considered as an island token i, where i ∈ {1, ..., N}. This

token generates a tensor field TVi around xi. For x ∈ Ω, TVi(x) is computed as the

tensor product of a vector Qi(x) with itself:

TVi(x) = Qi(x)⊗Qi(x) = Qi(x)(Qi(x))T . (7.1)
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The vector Qi(x) is defined as:

Qi(x) =
x− xi
d(xi,x)

e
−
d(xi,x)2

δ2 , (7.2)

where d(xi,x) is the Euclidian distance between xi and x, and δ is a scale at which

the structures of interest are recovered. This formulation ensures that the magnitude

of Qi(x) decreases while the distance between voxels x and xi increases. Note that in

practice, we only compute TVi(x) in a bounding box in which its values are not negli-

gible. The size of the bounding box is chosen to be 9δ×9δ×9δ. For the voxels outside

of this region, the energy of the tensor field is negligible. In our computations, we set

δ to 7mm which is slighly higher than the radii of the vessels. The communication

between the island tokens is then performed in TV by calculating:

TV(x) =
N∑
i=1

TVi(x), ∀x ∈ Ω. (7.3)

By using the saliency map to a curve [187, 84]: L(x) = λ1(x)−λ2(x), where λ1(x)

and λ2(x) are the two highest eigenvalues of TV(x), we finally measure how the point

x fits into a curve according to its neighbourhood. This map enhances the coronary

vessels even where the contrast between the vessels and the surrounding tissues is low.

Note that this simple interpretation of the tensor voting generates a small ghosting

effect around the vessel centerlines. The saliency map L(x), also referred to as tensor

enhanced vesselness image, is smoothed with a Gaussian filter of standard deviation

δ/2.

Figure 7.5: An example of tensor voting. Left: A small region of CTA image with
right coronary artery marked via the yellow line; Middle: Vesselness image with gaps
pointed by the arrows; Right: Vesselness image after tensor voting.
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7.3.3 Multi-level LDDMM registration

Image registration is performed using three channels (C1,S, C2,S, C3,S) and (C1,T , C2,T ,

C3,T ) computed from the source image IS and the target image IT using the approach

summarized in Figure 7.4. These channels represents different levels of information of

the registered images:

• The first channel C1 contains the original images IS and IT .

• The second channel C2 contains the tensor enhanced vesselness images LS and

LT , calculated in Section 7.3.2.

• Finally, the third channel C3 represents the original images smoothed by a Gaus-

sian filter.

In the registration framework, the channel C3 forces the source image to match the tar-

get image without taking details into account, so the global motion of major anatomical

structures in the CTA images is tracked. Channel C2 has a similar role, but only fo-

cuses on the coronary region. Finally, the channel C1 is complementary to C2 and C3

since it takes image details into account.

Figure 7.6: Multi-level strategy of the LDDMM registration.

A multi-level strategy, as in Figure 7.6, is adopted to register the images efficiently.

In the first level, an initial estimation of optimal deformation is obtained using the

smoothed images C3, then this estimation is refined using registration based on the

second channel C2. Finally, by introducing channel C1, all information is taken into

account for the finest estimation of deformation. This strategy is particularly robust

and fast. For the first two levels, it can be performed on the images downsampled
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by a factor of 2 in each dimension without losing accuracy. Figure 7.7 and 7.8 show

examples of the result of the first level and the third level of the registration.

The registrations are performed using the LDDMM framework [20, 40]. In this

framework, the images are deformed through diffeomorphic transformations φt, t ∈
[0, 1], which are defined by a time dependent velocity field v as follows:

∂tφt = vt(φt), (7.4)

where φ0 is the identity deformation and t ∈ [0, 1]. The velocity field vt deforms

the image coordinates at time t and φt is the induced deformation. For notational

convenience, we introduce:

φt,s
.
= φs ◦ φ−1

t . (7.5)

Contrary to [20], where the similarity measure is computed directly from IS and IT , the

images are indirectly compared here using the information contained in the channels.

The energy we minimize, as a function of v, is then:

E(v) =

∫ 1

0

1

2
||vt||2V dt+

3∑
i=1

(
αi||Ci,S ◦ φ−1

1 − Ci,T ||2L2

)
, (7.6)

where the first part of the equation computes the energy of the deformation field to

be used as a regularisation term, and the second part is the sum of the similarity

measures for the three channels. The parameters αi ∈ [0, 1] control the weight of the

channel i. These weights are tuned so that each channel has a similar influence. In

the energy of the deformations, the time dependent velocity field v is assumed to lie in

L2([0, 1], V ), where V is a Hilbert space of vector fields. Underlying this space, there

exists a smooth matrix valued kernel K that controls the spatial correlation of the

deformations. The minimization of the energy is described hereafter.

We denote Di,S
t = Ci,S ◦ φt,0 and Di,T

t = Ci,T ◦ φ1,t. The Jacobian of φt,1 at time t

is also noted |Dφt,1|. The minimization of the variational problem in Equation 7.6 is

performed by using a steepest gradient descent approach. This involves the iterative

use of the gradient of the functional E at time t:

∇vEt = vt −K ?

(
|Dφt,1|

3∑
i=1

(
αi∇Di,S

t (Di,S
t −D

i,T
t )
))

, (7.7)

where ? is the convolution operator. In our computations, we used an isotropic Gaus-

sian kernel K of standard deviation 10mm. Such kernel offers a good balance between

enough spatial correlation to ensure that the vessel radius is preserved and enough

spatial flexibility to properly match curved vessels.
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7.4 Experiments and Evaluation

The proposed motion estimation algorithm is tested in 4D CTA sequences from eight

subjects. These eight, 20-phased CTA sequences are denoted as EMC4DCTA3 data

that is acquired similarly as the EMC4DCTA2 data (Section 6.6.2). Prior to the

registration, 4D vessel enhancement anisotropic diffusion and multi-level thresholding

are performed in the same way as presented in the end of Section 6.1.3. A coarse

segmentation of the coronary arteries in the CTA image is performed using a multiscale

Hessian-based vessel enhancement filter [72]. In our expriments, we set the parameters

α = 0.5, β = 0.5, and choose γ as the largest norm of the eigenvalues across the whole

image. The vesselness response is computed at six different scales within the range

[0.8, 5.6]. The maximum response of the vesselness filter at the corresponding optimal

scale is computed for each voxel of the image. The calculated vesselness image Iv is

used to facilitate the coronary extraction and tracking. The parameters for balancing

the influence of different channels in the registration process are: α1 = 5 × 10−3,

α2 = 7.5 × 10−4 and α3 = 1. Note that the intensity range of the vesselness image

after tensor voting is much higher than those from the other two channels. Thus a

small α2 is chosen. All the aforementioned parameters are fixed for all eight 4D CTA

data.

The registration results using the proposed registration framework are shown in

Figure 7.7, 7.8, 7.9 and 7.10. For each subject, we segmented the coronary lumen

automatically and used a thinning algorithm to extract the coronary tree centerlines

from both end-systolic (ES) and end-diastolic (ED) phases. The centerlines in ES

phase are then deformed according to the optimal deformation from ML-LDDMM

registration to estimate the coronary positions in ED phase.

In order to quantitatively measure the accuracy of the motion tracking algorithm,

we also manually marked the centerlines for the ED and ES phases in these eight

CTA sequences. We compare the transformed centerlines with the manually marked

ones in ED phase as in the third row of Table 7.1. The distance between the manual

segmentation and the automatic tracked coronaries in each time frame is evaluated by

Equation 4.18.
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source

t = 0.25

t = 0.5

t = 0.75

t = 1

target

transversal coronal sagittal

Figure 7.7: ML-LDDMM registration results of level I from three different views as
shown in columns. From top to bottom, source image C3,S, intermediate transformed
results (t = 0.25, 0.5, 0.75), final result (t = 1) and target image C3,T .
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source

t = 0.25

t = 0.5

t = 0.75

t = 1

target

transversal coronal sagittal

Figure 7.8: ML-LDDMM registration results of level III from three different views as
shown by column. From top to bottom, source image IS, intermediate transformed
results (t = 0.25, 0.5, 0.75), final result (t = 1) and target image IT .
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source t = 0.25 t = 0.5

t = 0.75 t = 1 target

Figure 7.9: ML-LDDMM registration results. From left to right, source image IS,
intermediate transformed results (t = 0.25, 0.5, 0.75), final result (t = 1) and target
image IT .

source t = 0.25 t = 0.5 t = 0.75 t = 1 target

Figure 7.10: Registration results. The top row shows starting position of RCA.
From left to right, the source image, the intermediate transformed source images
(t = 0.25, 0.5, 0.75), the final result (t = 1) and the target image. Similarly, the bot-
tom row shows the mid-section region of RCA deforming from source to match with
target. Note that in each row all images were taken in the same region of interest.

As a comparison, we also present the natural displacement of the coronary tree

from ES to ED as in the second row in Table 7.1. The fourth row shows the percent-

age of coronary displacement that has been compensated by our motion estimation

method. The results show that ML-LDDMM registration based motion estimation has
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performed robustly and accurately. By automatically segmenting the coronary artery

and tracking the coronaries from ES to ED in CTA sequences, the patient-specific

coronary model and motion estimation are performed robustly in all eight testing

subjects.

Figure 7.11: Coronary artery lumen (P6). Left: segmented coronary artery lumen
at ES (green) and ED (red) phases. Right: estimated coronary lumen at ED phase
(green) compared with segmented lumen at ED (red).

Table 7.1: Coronary displacement and error of motion estimation

P1 P2 P3 P4 P5 P6 P7 P8

Displacement (mm) 8.18 7.63 8.36 7.79 8.62 10.05 8.09 7.88

Estimation error (mm) 1.79 1.26 1.43 1.25 0.69 1.19 1.35 1.04

Compensation (%) 78.12 83.49 82.89 83.95 92.00 88.16 83.31 86.80

7.5 Summary

In this chapter, we have presented a registration framework for patient-specific coro-

nary artery segmentation and motion estimation from dynamic cardiac CTA sequences

that significantly improves the robustness of motion tracking and eliminates the man-

ual interaction. This method has been tested on the clinical CTA datasets acquired

from eight subjects.

Prior to the coronary motion modelling for assisting the TECAB procedures, ac-

curate segmentation of the coronary centrelines is important in the identification of

correct vessel structures of interest. It is also essential to obtain the coronary lumen

165



for the diagnosis of coronary artery disease. However, diagnosis is not our priority in

this thesis. Thus the accuracy of the lumen segmentation is only visually inspected

rather than quantitatively measured.

A coronary artery atlas constructed from 26 patients’ 3D CTA scans is presented in

this chapter. However, the coronary anatomy varies substantially among population.

For example, we selected another eight patients’ scans in which the coronary anatomy

varies significantly. Figure 7.12 shows the coronary centrelines from another eight

patient scans after affine alignment. As noted in [78], based on which artery supplies

the posterior descending artery (PDA), coronary anatomy can be classified into three

types, namely, left-dominant, right-dominant and co-dominant. As the name implies,

the PDA is supplied by the LCX artery in left-dominance; by the RCA in right-

dominance and by both RCA and LCX in co-dominance. This imposes a challenge for

coronary atlas construction. Due to the number of CTA scans available for this work,

we do not differentiate the coronary centrelines based on their dominance. Thus the

constructed coronary atlas only represents a limited group of the population. However,

the constructed probabilistic atlas is shown to be sufficient for the purpose of coronary

motion tracking as in the experiments in this chapter.

Figure 7.12: Coronary centrelines extracted from another eight patients’ CTA images
at end-diastole.
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Chapter 8

Conclusion and Outlook

Coronary artery motion modelling is a difficult and challenging task. The principal

contribution of this thesis is the development and comparison of multiple methods

for patient-specific coronary artery motion modelling from the pre-operative 4D CTA

images as presented in Chapter 4 to Chapter 7. To build a coronary motion model, it is

a necessity to obtain a coronary segmentation. Therefore, another contribution of this

work is to develop suitable centreline extraction methods for the pre-operative 4D CTA

datasets provided, particularly for CTA scans with severe stair-step artefacts, ghosting

or other artefacts introduced during the CTA image acquisition and reconstruction.

We have presented two groups of methods for coronary centerline extraction:

• Vessel centrelines are extracted as intensity ridges from CTA images via a ridge-

traversal algorithm (Section 4.3);

• Centreline extraction using A* graph search and prior information (Section 5.4);

This approach is simplified in Section 6.2 where centrelines are extracted as

minimal cost paths via the A* graph search method only.

Although coronary lumen segmentation is not essential in our work, it potentially

can be used for stenosis quantification and aneurysm diagnosis. We present two ap-

proaches for coronary lumen segmentation:

1. Coronary lumen segmentation using pre-extracted centrelines and tubular model

fitting (Section 6.3.3);

2. Coronary lumen segmentation using a probabilistic atlas of the coronaries, vessel

enhancement and mathematical morphology (Section 7.2).

For the coronary motion modelling, four groups of methods are presented and

evaluated:

1. Ridge traversal combined with non-rigid registration (Chapter 4);
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2. A* graph search with prior information obtained from non-rigid registration

(Chapter 5);

3. Template-based tracking approaches using template matching, A* graph search,

and non-rigid registration (Chapter 6);

4. Motion tracking using multi-level and multi-channel LDDMM registration (Chap-

ter 7).

The work in Chapter 4 serves as the foundation for the rest of contributions of the

thesis. The methods in Chapter 5, 6 and 7 have demonstrated a good level of accuracy

and robustness according to our evaluations using the clinical 4D CTA data. Note that,

our goal in this thesis is to track the coronary artery motion throughout the cardiac

cycle in dynamic CTA sequence, rather than the extraction of coronary centrelines

in single-phase high-quality 3D CTA image as in [153]. Thus, compared with the

“gold-standard”, the tracking results in Chapter 5, 6 and 7 meet the clinical accuracy

requirements since the average residual displacements are lower than the vessel radii.

8.1 Discussion

Two main assumptions underlie the work in this thesis:

• We assume all the patients have periodic heart motion. Under this assumption,

the coronary motion derived from the ECG-gated 4D CTA sequence of a patient

acquired during one cardiac cycle can be used to generalise and describe the

coronary motion of the patient.

• We assume that the coronary motion pattern of the patient is the same before

and during the TECAB surgery. This assumption justifies the pre-operative

coronary motion models. However, this requirement could be relaxed in clinical

applications by allowing the matching of the pre-operative motion model to the

intra-operative data to account for differences in the motion pattern.

A limitation of the proposed image registration based motion tracking methods is

that, if there are other irrelevant vessels or ghost vessels1 appearing close to the actual

vessel of interest, the motion tracking algorithms may get confused and possibly “lock”

onto the wrong vessel instead. There are a number of other factors related to the image

acquisition that have an influence on the accuracy and robustness of coronary motion

reconstruction:

1Ghost vessels are displaced reduplications of vessels from other time frames which are shown at
current time frame.
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1. Heterogeneous distribution of the contrast agent;

2. Arrhythmic heart signals, residual breathing motion or other movement of the

patient during the image acquisition;

3. Interference of metal implants that are close to the anatomical structures to be

modelled.

Another limitation of our work lies in the lack of manual annotations (“gold-

standard”) of the coronary centrelines in 4D CTA sequences for validating the coronary

motion models. We manually annotated a limited number of data sets for evaluating

the proposed motion tracking method. However, for the evaluation in other data sets,

we used the extracted minimal-cost paths via the A* graph search subject to visual

inspection as the “gold-standard”. Although visual inspection guarantees these “gold-

standard” to be within the coronary lumen, they still may deviate from the actual

centrelines. This may underestimate the accuracy of coronary motion models con-

structed by the proposed methods. Potentially, through constructing patient-specific

coronary motion models from other modalities (e.g. biplane X-ray angiogram se-

quences [206]), we can evaluate and validate the motion model obtained from 4D CTA

data by checking its consistency with models from other modalities.

The work in this thesis consists of motion modelling of the three main coronary

artery branches, namely, LAD, LCX and RCA. More comprehensive patient-specific

coronary motion models including other coronary branches could be constructed, pro-

viding further improvement of the 4D CTA imaging quality for small vessels in future.

The probabilistic atlas of coronary arteries formed in Chapter 7 is sufficient for se-

lecting the vesselness region in our motion tracking framework. However, for future

study, more detailed atlases that reflect the variation of coronary anatomies (e.g., left-

dominance, right-dominance and central-dominance) can be formed from the CTA

scans of a large population. A quantitative comparison of the proposed algorithms in

Chapter 5, 6 and 7 can also be performed in future.

In the following section, we present some initial results pointing towards two other

possible directions for future research: automatic left ventricle segmentation in CTA

images and the simultaneous motion tracking of coronary arteries and LV. This is

followed by an outlook for future work on utilising pre-operative coronary and LV

motion models through registering the models with the intra-operative endoscopic

videos. Ultimately, this 2D-3D registration could provide guidance for the TECAB

surgery and prevent its conversion to conventional bypass surgery.
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8.2 Future Work

To facilitate the TECAB procedure and prevent its conversion to conventional invasive

surgery, we aim to construct a joint patient-specific 4D left ventricle (LV) and coronary

artery motion model from preoperative cardiac CTA sequences. The main challenge

of this part of the work is first to obtain automatic segmentation of both structures

and follow the deformation of both of them accurately. Here, we propose to use an

atlas-based segmentation method and registration-based motion tracking framework to

achieve this goal. Finally, through temporally and spatially aligning the coronary and

left ventricle motion model with the intraoperative endoscopic views of the patient’s

beating heart, this work has the potential to assist the surgeon to identify and locate

the correct coronaries during the robotically-controlled TECAB procedures.

8.2.1 Atlas-based Segmentation of the LV from CTA

Prior to motion modelling to assist the TECAB surgery, it is essential to segment the

left ventricle (LV) and coronary arteries accurately. The segmentation and motion

tracking of the coronary arteries have been addressed in previous chapters. In this

section, we focus on the segmentation of left ventricle.

The segmentation of the left ventricle (myocardium) from CTA images is achieved

using an atlas propagation scheme [257]. The atlas used here is constructed from MR

images for the whole heart segmentation in [258]. A number of MR images acquired

using the same MRI sequence from various subjects are used to construct this atlas.

All MR images are registered to a selected reference image. An atlas intensity image is

then computed as the mean intensity image from this group of registered MR images,

shown in Figure 8.1 (a). An labelled atlas image, as shown in Figure 8.1 (b), is

also created by manually labelling each anatomical structure of the reference image,

including the blood pool of each chamber, great vessels and left ventricle myocardium.

Given the 3D cardiac atlas, the main challenges of the segmentation for any new

patient scan are the initialisation of the substructures and imposition of shape con-

straints. This segmentation scheme is based on a registration framework consisting of

three steps [258]:

1. A global affine registration for localization;

2. A locally affine registration method (LARM) for substructure initialization;

3. A nonrigid free-form deformation (FFD) registration for refining the segmenta-

tion results from previous stage.

This registration scheme has been shown to be robust against the large variability of
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the heart shape [257], and it is particularly useful for our application as our CTA data

mainly come from pathological cases.

(a): A 3D MR atlas intensity image of the heart using a reference space of

the mean shape of 10 volunteer scans shown in three views;

(b): Labelled image of the atlas (a).

Figure 8.1: MR atlas intensity image and labelled image of the heart [258]. The images
are shown in sagittal, transverse and coronal views from left to right.

By using the normalized mutual information (NMI) as the similarity measure in

the non-rigid registration step, the MR atlas can also be used to segment the major

components from cardiac CTA images as argued in Zhuang et al. [257]. The gradient

ascent method and the multiresolution scheme as in [219] are used to optimise the

similarity metric.

Figure 8.2 shows the automatically segmented cardiac structures, including left

ventricle using the proposed method from three patients’ CTA scans. By visual in-

spection, these results are promising. However, quantitative assessment should be

performed for clinical evaluation in future.
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Figure 8.2: Examples of CTA image segmentation. (1st, 3rd and 5th rows): CTA
example images in three views; (2nd, 4th and 6th rows): the CTA images overlaid
with segmentation surfaces shown in light-grey with yellow contour.
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8.2.2 Simultaneous Motion Tracking of LV and Coronary Artery

Here we propose an approach for the simultaneous motion tracking of left ventricle

and coronary arteries from 4D CTA sequences. We first use the multi-scale vesselness

filter proposed by Frangi et al. [72] to perform a coarse segmentation of the coronary

arteries in the cardiac CTA images. The coronary centrelines are then extracted as

the minimal cost path from the enhanced images in all time frames. The centrelines at

the end-diastolic (ED) phase are used as prior input for the motion tracking. All other

centrelines are used to evaluate the accuracy of the motion tracking. To segment the

left ventricle at the ED phase automatically, we perform three levels of registration

using a cardiac atlas obtained from MR images as in Section 8.2.1. The cardiac

motion is derived from cardiac CTA sequences by using local-phase based non-rigid

registration. The CTA image at each time frame is registered to the ED frame by

minimizing the proposed cost function and following a serial propagation scheme.

Once the images have been aligned, a dynamic motion model of the left ventricle can

be obtained by applying the computed free-form deformations to the segmented left

ventricle at ED phase. A similar propagation method also applies to the coronary

arteries. To validate the accuracy of the motion models, we propose to compare the

actual position of the coronaries and left ventricle in each time frame with the predicted

ones as estimated from the proposed tracking method.

A 4D motion model of the beating heart with coronary arteries is needed for guiding

the TECAB procedure. To achieve this, we first segment the left ventricle and extract

the vessel centerlines from the ED time frame of the CTA image sequence. Secondly, we

align the sequence of cardiac CTA images to the ED time frame by using our proposed

registration method. Finally, we apply the derived deformation to the segmented

ventricle and extracted coronaries. The resulting patient-specific motion model can

then be used to augment the intraoperative view from endoscope cameras by 2D-3D

alignment.

For cardiac segmentation, previous research by Peters et al. [179] and Zhuang et

al. [257] are closely related to our proposed method in this section. As for cardiac mo-

tion tracking, non-rigid registration based on a B-spline free-form deformation (FFD)

model has shown promising results [43, 42].

The segmentation of the left ventricle (myocardium) is achieved using an atlas

propagation scheme as presented in Section 8.2.1. For the coronary segmentation,

the CTA images are first processed with multiscale Hessian-based vessel enhancement

filter [72]. The centrelines of coronary arteries are then extracted as minimal cost

paths connecting the start and end nodes as in Section 6.2.

Normalised mutual information has been widely used as a similarity metric for

nonrigid image registration. To align two images using NMI, the structures of interest
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should be initialized close enough to guarantee a majority overlap. However, this is

practically difficult for the registration of the coronary artery because of its thin and

elongated shape, as shown in Figure 8.3 (c). Furthermore, the thin structure of vessels

has little impact on the NMI similarity measure when the similarity is computed

for registering the whole heart. As a result, the NMI similarity measure may not

capture the motion of vessels sufficiently. To tackle this problem, we propose to use

local phase [82] to capture the deformation and register the thin structure of coronary

arteries. The local phase φ is derived using the monogenic signal [82]:

φ(x) = atan2


√√√√ 3∑

i=1

(g(x) ∗ hi(x) ∗ I(x))2, g(x) ∗ I(x)

 , (8.1)

where g is a zero mean bandpass filter such as the log-Gabor filter [82], convolved with

I to constitute the even component of the signal; {hi} are the odd anti-symmetric

filters in the spatial domain, i = 1, 2, 3, whose expression in frequency domain Hi is:

Hi(u1, u2, u3) =
ui√

u2
1 + u2

2 + u2
3

. (8.2)

The local orientation of the signal can be estimated as:

Od(x) =
g(x) ∗ hd(x) ∗ I(x)√√√√ 3∑

d=1

(g(x) ∗ hd(x) ∗ I(x))2

(8.3)

Local phase provides a quantitative and continuous description of local features,

such as the thin structure of vessels in CTA images. Figure 8.3 shows two CTA images

(a, c) and their corresponding phase images (b, d).

For the registration of other substructure of interests such as ventricles, we require

the intensity information for computing the similarity measure. Therefore, we combine

both the intensity and local phase for the computation of the cost function, as follows:

F(It, Is,T) = w1S(It, Is,T) + w2S(φt, φs,T)− w3P(T) , (8.4)

where It and Is denote the target and source image respectively, T is the free-form

deformation; S is similarity metric such as NMI or normalized cross correlation (NCC)

for the image intensity and local phase, P(T) is the bending energy of T for smoothness

regularisation; w1, w2 and w3 are weights for the three terms respectively.
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(a) (b)

(c) (d)

Figure 8.3: A CTA image (a) and its local phase image (b); A CTA image region
containing right coronary artery segment (c) and its local phase (d).

To register different frames of a CTA dataset to a selected reference frame, we use

the serial propagation registration to model the large deformation field required for the

registration between two frames that are far apart from each other, such as between

the ED and ES frames. In the serial propagation, we first register the two neighboring

frames to the reference frame. The resulting transformation is used to initialize the

registration of next pair. The process continues until all images are aligned with the

reference, as shown in Figure 6.12.

The cardiac motion extracted by the phase-based method is used to predict the

motion of left ventricle and coronaries here. The coronaries and left ventricles extracted

from ED phase are deformed according to the obtained deformation information to all

other phases to form the coronary and left ventricle motion models. Figure 8.4 shows

an example of registration results, both the left ventricle and coronary artery (pointed

by red arrow) are aligned after using proposed registration scheme.
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(a) (b) (c)

(d) (e)

Figure 8.4: Registration results using local phase based method. (a): Reference image;
(b): Source image; (c): Subtraction of (a) and (b) before registration. (d): Deformed
image of (b) after registration; (e): Subtraction of (a) and (d). Note the red arrow
points to a coronary artery cross-section in reference image (a).

For future quantitative evaluation, we propose to assess the motion tracking accu-

racy for the left ventricle and coronary arteries separately. For the left ventricle, we

compute the distance between the manually annotated surface and the surface com-

puted from our proposed motion tracking as in Zhuang et al. [257]. To assess the qual-

ity of coronary motion model, coronary centerlines are extracted semi-automatically

from all time frames of the CTA sequence. We propose to compare the predicted

location of the centrelines obtained by applying the non-rigid deformation with the

extractions of the centrelines.

In this subsection 8.2.2, we have proposed an approach for the simultaneous motion

tracking of patient-specific left ventricle and coronary tree from CTA sequences to

assist the totally endoscopic coronary artery bypass surgery. The proposed method has

been tested on the clinical CT datasets acquired from four subjects and good results

have been visually observed. Further tests and quantitative analysis are required to

confirm these preliminary results.
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8.2.3 2D-3D Registration of Intra-operative Images and Pre-

operative Models

One further extension of our work would be to align the constructed pre-operative

coronary and left ventricle motion model with the series of 2D endoscopic images cap-

tured during the operation to provide a fused visualisation.

Figure 8.5: The layout of the system in theatre [68]. ECG and the stereo video are
grabbed by the machine to gain parameters we need for the image overlay, e.g. the
heart and breathing frequencies. The resulting images from the dual graphics output
are overlaid to the real video images using video mixers. There is no delay of the real
video images in the view of the surgeon as they are just copied to our PC (there is a
direct connection from the camera controller via the video mixer to the converter and
the master console).
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Some work has been done in 2D-3D image registration based on clinical images [83,

41, 194] or on phantom images [223]. Markelj et al. [148] provide an up-to-date review

on 2D-3D registration. However, to the best of our knowledge, registering patient-

specific LV and coronary motion model with the intra-operative endoscopic videos has

not been widely investigated in the literature.

(a) (b)

(c)

Figure 8.6: A rendering of preoperative model and its alignment with an endoscopic
view [68]. (a): A rendering of the preoperative model showing the myocardial surface,
left internal mammary artery, left anterior descending artery and a diagonal branch.
(b): an aligned rendering and (c) its corresponding endoscope view.

In [68], Figl et al. presented our initial work on this challenging topic and the

preliminary results. Figure 8.5 shows the layout of the image-guided TECAB surgical

system in the theatre, while Figure 8.6 shows a rendering of the pre-operative LV and

coronary model and its alignment with an endoscopic image after 2D-3D registration.

This 2D-3D matching potentially could help to assist the planning and conducting
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of TECAB surgery and therefore reduce the conversion rate from TECAB to more

invasive conventional procedures.
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lowicz and Wilfried Philips, editors, CAIP, volume 3691 of Lecture Notes in

Computer Science, pages 604–611. Springer, 2005.

[38] C. Caero and P. Radeva. Vesselness enhancement diffusion. Pattern Recognition

Letters, 24(16):3141–3151, 2003.

[39] WHO Media Center, editor. The 10 leading causes of death by broad income

group (2004). World Health Organization, October 2008.

[40] C. Ceritoglu, K. Oishi, X. Li, M.C. Chou, L. Younes, M. Albert, C. Lyketsos,

P.C. van Zijl, M.I. Miller, and S. Mori. Multi-contrast large deformation diffeo-

morphic metric mapping for diffusion tensor imaging. Neuroimage, 47(2):618–

627, 2009.

185



[41] H.M. Chan, A.C.S. Chung, S.C.H. Yu, and W.M.I.I.I. Wells. 2D-3D vascular reg-

istration between digital subtraction angiographic (dsa) and magnetic resonance

angiographic (mra) images. In IEEE International Symposium on Biomedical

Imaging: Nano to Macro, pages 708 – 711 Vol. 1, 2004.

[42] R. Chandrashekara, R. Mohiaddin, R. S. Razavi, and D. Rueckert. Nonrigid

image registration with subdivision lattices application to cardiac MR image

analysis. In MICCAI, volume 4791, pages 335–342. Springer, 2007.

[43] R. Chandrashekara, R. Mohiaddin, and D. Rueckert. Analysis of 3D myocardial

motion in tagged MR images using nonrigid image registration. IEEE Transac-

tions on Medical Imaging, 23(10):1245–1250, 2004.

[44] Y.L. Chang and X.B. Li. Adaptive image region-growing. IEEE Transactions

on Image Processing, 3(6):868–872, 1994.

[45] S. Chaudhuri, S. Chatterjee, N. Katz, M. Nelson, and M. Goldbaum. Detection

of blood vessels in retinal images using two-dimensional matched filters. IEEE

Transactions on Medical Imaging, 8(3):263–269, sep. 1989.

[46] S.Y.J. Chen and J.D. Carroll. Kinematic and deformation analysis of 4-d coro-

nary arterial trees reconstructed from cine angiograms. IEEE Transactions on

Medical Imaging, 22(6):710–721, June 2003.

[47] D. Chillet, J. Jomier, D. Cool, and S.R. Aylward. Vascular atlas formation using

a vessel-to-image affine registration method. In Randy E. Ellis and Terry M.

Peters, editors, MICCAI (1), volume 2878 of Lecture Notes in Computer Science,

pages 335–342. Springer, 2003.

[48] J.-L. Coatrieux, K. Rioual, C. Goksu, E. Unanua, and P. Haigron. Ray casting

with “on-the-fly” region growing: 3-D navigation into cardiac MSCT volumes.

IEEE Transactions on Information Technology in Biomedicine, 10(2):417–420,

2006.

[49] A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens, and G. Mar-

chal. Automated multimodality image registration using information theory.

In Y. Bizais, C. Barillot, and R. Di Paola, editors, Proceedings of Information

Processing in Medical Imaging, pages 263–274, 1995.

[50] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space

analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence,

24(5):1–18, 2002.

186



[51] O. Commowick and S.K. Warfield. Estimation of inferential uncertainty in as-

sessing expert segmentation performance from STAPLE. IEEE Transactions on

Medical Imaging, 29(3):771–780, 2010.

[52] M.G. Danilouchkine, F. Mastik, and A.F.W. van der Steen. A study of coro-

nary artery rotational motion with dense scale-space optical flow in intravascular

ultrasound. Physics in Medicine and Biology, 54(6):1397, 2009.

[53] P.J. de Feyter and G. Krestin, editors. Computed Tomography of the Coronary

Arteries. Informa Healthcare, 2 edition, July 2008.

[54] M. Dewan, G.D. Hager, and C.H. Lorenz. Image-based coronary tracking and

beat-to-beat motion compensation: Feasibility for improving coronary MR an-

giography. Magnetic Resonance in Medicine, 60(3):604–615, 2008.

[55] M. Dewan, C.H. Lorenz, and G.D. Hager. Deformable motion tracking of car-

diac structures (demotracs) for improved MR imaging. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR ’07), pages 1 –8, 17-22 2007.

[56] A. Diegeler, T. Walther, S. Metz, V. Falk, R. Krakor, R. Autschbach, and F.W.

Mohr. Comparison of MIDCAP versus conventional CABG surgery regarding

pain and quality of life. Heart Surgery Forum, 2(4):290–295, 1999.

[57] E. Dittrich, R. Neji, T. Schmoll, S. Schriefl, C. Ahlers, R.A. Leitgeb, and

G. Langs. Detection of capillary vessels in Optical Coherence Tomography based

on a probabilistic kernel. In Medical Image Understanding and Analysis, 2009.

[58] J.T. Dodge, B.G. Brown, E.L. Bolson, and H. T. Dodge. Intrathoracic spatial

location of specified coronary segments on the normal human heart. applications

in quatitative arteriography, assessment of regional risk and contraction, and

anatomic display. Circulation, 78:1167–1180, 1988.

[59] J.T. Dodge, B.G. Brown, E.L. Bolson, and H.T. Dodge. Lumen diameter of

normal human coronary arteries. influence of age, sex, anatomic variation, and

left ventricular hypertrophy or dilation. Circulation, 86:232–246, 1992.

[60] S. Dogan, T. Aybek, E. Andressen, C. Byhahn, S. Mierdl, K. Westphal, G. Math-

eis, A. Moritz, and G. Wimmer-Greinecker. Totally endoscopic coronary artery

bypass grafting on cardiopulmonary bypass with robotically enhanced telemanip-

ulation: Report of forty-five cases. Journals of Thoracic Cardiovascular Surgery,

123:1125–1131, 2002.

187



[61] L. Dougherty, J.C. Asmuth, A.S. Blom, L. Axel, and R. Kumar. Validation of

an optical flow method for tag displacement estimation. IEEE Transactions on

Medical Imaging, 18(4):359–363, 1999.

[62] M.-P. Dubuisson-Jolly, Cheng-Chung Liang, and A. Gupta. Optimal polyline

tracking for artery motion compensation in coronary angiography. In Sixth In-

ternational Conference on Computer Vision, pages 414–419, 1998.

[63] T. Todd Elvins. A survey of algorithms for volume visualization. SIGGRAPH

Comput. Graph., 26(3):194–201, 1992.

[64] E.K. Fishman et al. CT is us. The Advanced Medical Imaging Laboratory,

Department of Radiology, Johns Hopkins Medical Institutions, Baltimore, MD,

2006.

[65] P. Fallavollita and F. Cheriet. Robust coronary artery tracking from fluoroscopic

image sequences. In Image Analysis and Recognition, volume 4633, pages 889–

898, 2007.

[66] P. Felkel, R. Wegenkittl, and A. Kanitsar. Vessel tracking in peripheral CTA

datasets – an overview. In SCCG ’01: Proceedings of the 17th Spring conference

on Computer graphics, page 232. IEEE Computer Society, 2001.

[67] M. Figl, D. Rueckert, D. Hawkes, R. Casula, M. Hu, O. Pedro, D.P. Zhang,

G. Penney, F. Bello, and P. Edwards. Augmented reality image guidance for min-

imally invasive coronary artery bypass. In Proc. SPIE Medical Imaging: Visu-

alization, Image-Guided Procedures, and Modeling, volume 6918, pages 69180P–

69180P–7, 2008.

[68] M. Figl, D. Rueckert, D. Hawkes, R. Casula, M. Hu, O. Pedro, D.P. Zhang,

G. Penney, F. Bello, and P. Edwards. Image guidance for robotic minimally

invasive coronary artery bypass. Computerized Medical Imaging and Graphics,

34(1):61–68, 2010.

[69] R.W. Fischer, R.M. Botnar, K. Nehrke, P. Boesiger, W.J. Manning, and D.C.

Peters. Analysis of residual coronary artery motion for breath hold and navigator

approaches using real-time coronary MRI. Magnetic Resonance in Medicine,

55(3):612–618, 2006.

[70] C. Florin, N. Paragios, and J. Williams. Particle filters, a quasi-Monte Carlo

solution for segmentation of coronaries. In J.S. Duncan and G. Gerig, editors,

Medical Image Computing and Computer-Assisted Intervention MICCAI 2005,

188



volume 3749 of Lecture Notes in Computer Science, pages 246–253. Springer

Berlin / Heidelberg, 2005.

[71] A.F. Frangi. Three-dimensional model-based analysis of vascular and cardiac

images. PhD thesis, University Medical Center Utrecht, The Netherlands, 2001.

[72] A.F. Frangi, W. Niessen, R. Hoogeveen, T. van Walsum, and M. Viergever.

Model-based quantitation of 3D magnetic resonance angiographic images. IEEE

Transactions on Medical Imaging, 18(10):946–956, 1999.

[73] A.F. Frangi, W.J. Niessen, K.L. Vincken, and M.A. Viergever. Multiscale vessel

enhancement filtering. In Medical Image Computation and Computer-Assisted

Intervention - MICCAI 98, volume 1496 of Lecture Notes in Computer Science,

pages 130–137. Springer, 1998.

[74] Y. Fridman. Extracting branching object geometry via cores. PhD thesis, Uni-

versity of North Carolina at Chapel Hill, Chapel Hill, NC, USA, 2004.

[75] Y. Fridman, S.M. Pizer, S.R. Aylward, and E. Bullitt. Segmenting 3D branching

tubular structures using cores. In Randy E. Ellis and Terry M. Peters, editors,

MICCAI (2), volume 2879 of Lecture Notes in Computer Science, pages 570–577.

Springer, 2003.

[76] O. Friman, M. Hindennach, C. Khnel, and H.O. Peitgen. Multiple hypothe-

sis template tracking of small 3D vessel structures. Medical Image Analysis,

14(2):160–171, 2010.

[77] O. Friman, M. Hindennach, and H. O. Peitgen. Template-based multiple hy-

potheses tracking of small vessels. In 5th IEEE International Symposium on

Biomedical Imaging: From Nano to Macro [1], pages 1047–1050.

[78] V. Fuster, R.A. O’Rourke, R. Walsh, and P. Poole-Wilson. Hurst’s the Heart.

McGraw-Hill Medical, 12 edition, Dec. 2007.

[79] M. Garreau, J.L. Coatrieux, R. Collorec, and C. Chardenon. A knowledge-based

approach for 3-d reconstruction and labeling of vascular networks from biplane

angiographic projections. IEEE Transactions on Medical Imaging, 10(2):122–

131, 1991.

[80] M. Garreau, A. Simon, D. Boulmier, J.-L. Coatrieux, and H. L. Breton. Assess-

ment of left ventricular function in cardiac MSCT imaging by a 4D hierarchical

surface-volume matching process. International Journal of Biomedical Imaging,

pages 1–10, 2006.

189



[81] J.-M. Gorce, D. Friboulet, and I.E. Magnin. Estimation of three-dimensional

cardiac velocity fields: assessment of a differential method and application to

three-dimensional CT data. Medical Image Analysis, 1(3):245–261, 1997.

[82] V. Grau, H. Becher, and J. A. Noble. Registration of multiview real-time

3-D echocardiographic sequences. IEEE Transactions on Medical Imaging,

26(9):1154–1165, September 2007.

[83] M. Groher, D. Zikic, and N. Navab. Deformable 2D-3D registration of vascu-

lar structures in a one view scenario. IEEE Transactions on Medical Imaging,

28(6):847–860, 2009.

[84] G. Guy and G. Medioni. Inference of surfaces, 3D curves, and junctions from

sparse, noisy, 3D data. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 19(1):1265–1277, 1997.

[85] J.V. Hajnal, D.L.G. Hill, and D.J. Hawkes., editors. Medical Image Registration.

CRC Press, 2001.

[86] K. Haris, S.N. Efstratiadis, N. Maglaveras, C. Pappas, J. Gourassas, and

G. Louridas. Model-based morphological segmentation and labeling of coro-

nary angiograms. IEEE Transactions on Medical Imaging, 18(10):1003–1015,

1999.

[87] P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuristic deter-

mination of minimum cost paths. IEEE Transactions on Systems Science and

Cybernetics, 4(2):100–107, 1968.

[88] W. Harvey. Anatomical Studies on the Motion of the Heart and Blood. Spring-

field, Illinois Charles C. Thomas, 5 edition, 1970. Translator: C.D. Leake.

[89] D.G. Heath, P.A. Soyer, B.S. Kuszyk, D.F. Bliss, P.S. Calhoun, D.A. Bluemke,

M.A. Choti, and E.K. Fishman. Three-dimensional spiral CT duing arterial por-

tography: comparison of three rendering techniques. Radiographics, 15(4):1001–

1011, 1995.

[90] R.A. Heckemann, J.V. Hajnal, P. Aljabar, D. Rueckert, and A. Hammers. Au-

tomatic anatomical brain MRI segmentation combining label propagation and

decision fusion. NeuroImage, 33(1):115–126, 2006.

[91] C. Herbradson. Learning the Cardiovascular System. Kellogg Community Col-

lege, USA, 1999.

190



[92] R.J. Herfkens, C.B. Higgins, H. Hricak, M.J. Lipton, L.E. Crooks, P. Lanzer,

E. Botvinick, B. Brundage, P.E. Sheldon, and L. Kaufman. Nuclear magnetic

resonance imaging of the cardiovascular system: normal and pathologic findings.

Radiology, 147(3):749–759, 1983.

[93] M.B.M. Hofman, S.A. Wickline, and C.H. Lorenz. Quantification of in-plane

motion of the coronary arteries during the cardiac cycle: Implications for ac-

quisition window duration for MR flow quantification. Journal of Magnetic

Resonance Imaging, 8(3):568–576, 1998.

[94] M. Hosono, Y. Sasaki, M. Sakaguchi, and S. Suehiro. Intraoperative fluorescence

imaging during surgery for coronary artery fistula. Interactive Cardiovascular

and Thoracic Surgery, 10(3):476–477, 2010.

[95] R. Howe. Fixing the beating heart: Ultrasound guidance for robotic intracardiac

surgery. In Functional Imaging and Modeling of the Heart, volume 5528 of Lecture

Notes in Computer Science, pages 97–103. Springer, 2009.

[96] M.H. Hoyos, A. Anwander, M. Orkisz, J.P. Roux, P. Douek, and I.E. Magnin. A

deformable vessel model with single point initialization for segmentation, quan-

tification and visualization of blood vessels in 3D MRA. In Scott L. Delp, An-

thony M. DiGioia, and Branislav Jaramaz, editors, MICCAI, volume 1935 of

Lecture Notes in Computer Science, pages 735–745. Springer, 2000.

[97] D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang,

M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, and et al. Optical coherence

tomography. Science, 254(5035):1178–1181, 1991.

[98] L. Husmann, S. Leschka, L. Desbiolles, T. Schepis, O. Gaemperli, B. Seifert,

P. Cattin, T. Frauenfelder, T. G. Flohr, B. Marincek, P.A. Kaufmann, and

H. Alkadhi. Coronary artery motion and cardiac phases: Dependency on heart

rateimplications for CT image reconstruction. Radiology, 245(2):567–576, 2007.

[99] C. Ingrassia, P. Windyga, and M. Shah. Segmentation and tracking of coronary

arteries. In Proceedings of the First Joint BMES/EMBS Conference, volume 1,

page 203, 1999.

[100] Heart & Vascular Institute. Heart Valve Surgery.

http://www.clevelandclinic.org, 2006.

[101] Inc Intuitive Surgical. da Vinci surgical system.

http://www.intuitivesurgical.com, 2005.

191



[102] J. Jia and C.K. Tang. Image repairing: Robust image synthesis by adaptative

Nd tensor voting. In Proceedings of the 2003 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition (CVPR’03), 2003.

[103] K.R. Johnson, S.J. Patel, A. Whigham, A. Hakim, R.I. Pettigrew, and J.N. Os-

hinski. Three-dimensional, time-resolved motion of the coronary arteries. Jour-

nal of Cardiovascular Magnetic Resonance, 6(3):663–673, 2004.

[104] P.T. Johnson, D.G. Heath, B.S. Kuszyk, and E.K. Fishman. CT angiography

with volume rendering: advantages and applications in splanchnic vascular imag-

ing. Radiology, 200(2):564–568, 1996.

[105] J. Jomier and S.R. Aylward. Rigid and deformable vasculature-to-image regis-

tration: A hierarchical approach. In Barillot et al. [17], pages 829–836.

[106] J. Jomier, V. LeDigarcher, and S.R. Aylward. Automatic vascular tree formation

using the mahalanobis distance. In James S. Duncan and Guido Gerig, editors,

MICCAI, volume 3750 of Lecture Notes in Computer Science, pages 806–812.

Springer, 2005.

[107] J. Jomier, V. LeDigarcher, and S.R. Aylward. Comparison of vessel segmenta-

tions using STAPLE. In James S. Duncan and Guido Gerig, editors, MICCAI,

volume 3749 of Lecture Notes in Computer Science, pages 523–530. Springer,

2005.

[108] A.C. Kak and M. Slaney. Principles of Computerized Tomographic Imaging.

IEEE Press, 1988.

[109] I. Kakadiaris, A. Santamaria-Pang, and A. Pednekar. Functional morphology

analysis of the left anterior descending coronary artery in EBCT images. IEEE

Transactions on Biomedical Engineering, 57(8):1886–1896, 2010.

[110] A. Kanitsar, D. Fleischmann, R. Wegenkittl, P. Felkel, and E. Groller. CPR -

curved planar reformation. In IEEE in Visualization, pages 37–44, 2002.

[111] A. Kanitsar, D. Fleischmann, R. Wegenkittl, D. Sandner, P. Felkel, and

E. Groller. Computed tomography angiography: a case study of peripheral

vessel investigation. In IEEE in Visualization, pages 477–481, 2001.

[112] A. Kanitsar, R. Wegenkittl, D. Fleischmann, and M.E. Groller. Advanced curved

planar reformation: Flattening of vascular structures. In Proceedings of the 14th

IEEE Visualization 2003, pages 43–50, 2003.

192



[113] A.P. King, R. Boubertakh, K.S. Rhode, Y.L. Ma, P. Chinchapatnam, G. Gao,

T. Tangcharoen, M. Ginks, M. Cooklin, J.S. Gill, D.J. Hawkes, R.S. Razavi,

and T. Schaeffter. A subject-specific technique for respiratory motion correction

in image-guided cardiac catheterisation procedures. Medical Image Analysis,

13(3):419–431, 2009.

[114] A.P. King, C. Jansen, K.S. Rhode, D. Caulfield, R.S. Razavi, and G.P. Penney.

Respiratory motion correction for image-guided cardiac interventions using 3-D

echocardiography. Medical Image Analysis, 14(1):21–29, 2010.

[115] C. Kirbas and F. Quek. A review of vessel extraction techniques and algorithms.

ACM Computing Surveys, 36(2):81–121, 2004.

[116] J. Kittler, M. Hatef, R.P.W. Duin, and J. Matas. On combining classifiers.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(3):226–

239, 1998.

[117] Y. Kong, J.J. Morris Jr., and H.D. McIntosh. Assessment of regional myocardial

performance from biplane coronary cineangiograms. The American Journal of

Cardiology, 27(5):529–537, 1971.

[118] K. Krissian. Flux-based anisotropic diffusion applied to enhancement of 3-D

angiograms. IEEE Transactions on Medical Imaging, 21(11):1440–1442, 2002.

[119] K. Krissian, G. Malandain, N. Ayache, R. Vaillant, and Y. Trousset. Model

based detection of tubular structures in 3D images. Computer Vision and Image

Understanding, 80(2):130–171, 2000.

[120] K. Krissian, X. Wu, and V. Luboz. Smooth vasculature reconstruction with

circular and elliptic cross sections. In Medicine Meets Virtual Reality Conference

(MMVR06), volume 119, pages 273–278. IOS Press, 2005.

[121] W.H. Kruskal and W.A. Wallis. Use of ranks in one-criterion variance analysis.

Journal of the American Statistical Association, 47(260):583–621, 1952.

[122] S. Laguitton, C. Boldak, A. Bousse, G. Yang, and C. Toumoulin. Temporal

tracking of coronaries in MSCTA by means of 3D geometrical moments. In

28th Annual International Conference of the IEEE Engineering in Medicine and

Biology Society (EMBS), pages 924–927, 2006.
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