
Supporting Computer Vision through

High Performance GPU Programming

Dong Ping Zhang

12 Jan, 2013

AMD Research

2 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

Most parallel code runs on CPUs designed for scalar workloads

3 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

APPLICATION AREAS WITH ABUNDANT PARALLEL WORKLOADS

Biometric
Recognition

Secure, fast, accurate:
face, voice, fingerprints

Beyond HD
Experiences

Streaming media, new
codecs, 3D, transcode,
audio

Augmented
Reality

Superimpose graphics,
audio, and other digital
information as a virtual
overlay

AV Content
Management

Searching, indexing and
tagging of video & audio.
multimedia data mining

Natural UI &
Gestures

Touch, gesture,
and voice

Content
Everywhere

Content from any
source to any display
seamlessly

4 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

Knossos
Source: wikipedia

ARCHAEOLOGY?

Tintagel Castle and Fountains Abbey
Source: English Heritage

5 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

WHERE AM I GOING WITH THIS?

Hardware Software
Vision

workloads

Academic

collaboration

6 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

WHERE AM I GOING WITH THIS?

AMD GPU and APU Architecture
The HD7970 and Graphics Core Next

Hardware Software
Vision

workloads

Academic

collaboration

7 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

THE SIMD CORE

The SIMD unit on the old Radeon architectures had a branch control but full scalar execution was

performed globally

8 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

THE SIMD CORE

On the HD7970 we have a full scalar processor and the L1 cache and LDS have been doubled in size

Then let us consider the VLIW ALUs

9 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

THE SIMD CORE

Remember we could view the architecture two ways:

– An array of VLIW units

– A VLIW cluster of vector units

10 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

THE SIMD CORE

Now that we have a scalar processor we can dynamically schedule instructions rather than relying on the

compiler

No VLIW!

The heart of Graphics Core Next:

– A scalar processor plus four 16-wide vector units

– Each lane of the vector, and hence each IL work item, is now scalar

11 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

The scalar core manages a large number of threads

– Each thread requires its set of vector registers

– Significant register state for both scalar and vector storage

– 10 waves per SIMD, 40 waves per CU (core), 2560 work items per CU, 81920 work items on the

HD7970

THE SIMD CORE

12 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

64kB
read-write
L1 cache

Instruction
decode etc

512kB
read-write
L2 cacheFMISC SSE

FMUL SSE

FADD SSE
Scalar
units

(3 scalar
ALUs, branch
control etc)

FAMILIAR?

 If we add the frontend of the core…

64kB Local Data Share: 32 banks with integer atomic units

16kB
read-write
L1 cache

Scalar
processor

Instruction
decode etc

“Graphics Core Next” core

“Barcelona” core

13 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

AMD RADEON HD7970 - GLOBALLY

Two command processors

– Capable of processing two command queues concurrently

Full read/write L1 data caches

SIMD cores grouped in fours

– Scalar data and instruction cache per cluster

– L1, LDS and scalar processor per core

Up to 32 cores / compute units

14 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

The APU has arrived and it is a great

advance over previous platforms

Combines scalar processing on CPU with

parallel processing on the GPU and high

bandwidth access to memory

How do we make it even better going

forward?

– Easier to program

– Easier to optimize

– Easier to load balance

– Higher performance

– Lower power

14

APU E350 (2011)

APU: ACCELERATED PROCESSING UNIT

15 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

HETEROGENEOUS SYSTEM ARCHITECTURE ROADMAP

16 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

HETEROGENEOUS SYSTEM ARCHITECTURE
Brings All the Processors in a System into Unified Coherent Memory

POWER
EFFICIENT

EASY TO
PROGRAM

FUTURE
LOOKING

ESTABLISHED
TECHNOLOGY
FOUNDATION

OPEN
STANDARD

INDUSTRY
SUPPORT

17 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

HETEROGENEOUS SYSTEM ARCHITECTURE – AN OPEN PLATFORM

Open Architecture, published specifications

– HSAIL virtual ISA

– HSA memory model

– HSA system architecture

 ISA agnostic for both CPU and GPU

HSA Foundation formed in June 2012

 Inviting academic partners to join us, in all areas

– Hardware design

– Operating Systems

– Tools and Middleware

– Applications

18 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

WHERE AM I GOING WITH THIS?

AMD Software Infrastructure

Software
Vision

workloads

Academic

collaboration
Hardware

19 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

OPENCL™ TODAY

OpenCL

– Open development platform for multi-vendor heterogeneous architectures

– Broad industry support: Created by architects from AMD, Apple, IBM, Intel, Nvidia, Sony, etc.

– It provides C API and an extended subset of C99 kernel language.

– Excellent performance, but programming can be longwinded and difficult

Molecular Dynamics

BUDE, NMAD, Folding@Home

Ray Tracing

LuxRenderer
Search for missing matter in the

Universe

20 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

HOST AND DEVICE MODEL

OpenCL™ uses a host and device model

– Host code dispatches kernel code to the devices

Host Device

Device

Host Code

Kernel CodeKernel Code

Kernel Code

Kernel Code

21 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

Create the program

EXAMPLE – VECTOR ADDITION (HOST PROGRAM)

// create the OpenCL context on a GPU device

cl_context = clCreateContextFromType(0, CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

// get the list of GPU devices associated with context

clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, &cb);

devices = malloc(cb);

clGetContextInfo(context, CL_CONTEXT_DEVICES, cb, devices, NULL);

// create a command-queue

cmd_queue = clCreateCommandQueue(context, devices[0], 0, NULL);

// allocate the buffer memory objects

memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcA, NULL);

memobjs[1] = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcB, NULL);

memobjs[2] = clCreateBuffer(context, CL_MEM_WRITE_ONLY, sizeof(cl_float)*n, NULL, NULL);

// create the program

program = clCreateProgramWithSource(context, 1, &program_source, NULL, NULL);

// build the program

err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);

// create the kernel

kernel = clCreateKernel(program, “vec_add”, NULL);

// set the args values

err = clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *) &memobjs[0]);

err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *) &memobjs[1]);

err |= clSetKernelArg(kernel, 2, sizeof(cl_mem), (void *) &memobjs[2]);

// set work-item dimensions

global_work_size[0] = n;

// execute kernel

err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1, NULL, global_work_size, NULL, 0, NULL, NULL);

// read output array

err = clEnqueueReadBuffer(cmd_queue, memobjs[2], CL_TRUE, 0, n*sizeof(cl_float), dst, 0, NULL, NULL);

Define platform and queues

Define memory objects

Build the program

Create and setup kernel

Execute the kernel

Read results on the host

Same boiler-plate code across

virtually every OpenCL host code

22 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

OPENCL™ C++ HOST API CODE FOR VECTOR ADD

std::function<Event (const EnqueueArgs&, Buffer, Buffer, Buffer)> vadd =

make_kernel<Buffer, Buffer, Buffer>(Program(program_source), “vadd”);

memobj[0] = Buffer (CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(float) * n, srcA);

memobj[1] = Buffer (CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(float) * n, srcB);

memobj[2] = Buffer (CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(float) * n);

vadd(EnqueueArgs(NDRange(n)), memobj[0], memobj[1], memobj[2]));

enqueueReadBuffer(memobj[2], CL_TRUE, sizeof(float) * n, dest);

Program automatically

created and compiled

Defaults, no need to

reference context,

command queue

No clReleaseXXX cleanup

code required

23 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

OPENCL C++ INTERFACE AND KERNEL LANGUAGE EXTENSION

Khronos has defined a common C++ header file containing a high level interface to OpenCL

 Common defaults for the platform and command-queue

 Simplify basic API by parameterizing through template types

 Maintain object lifetimes through constructors and destructors

 Support function-like kernel dispatch

OpenCL C++ kernel language extension

 Support static C++ language features

 Support templating and overloading

 Innovative integration with OpenCL C address spaces

Make it easier to create applications for heterogeneous platforms.

24 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

CODE SIZE REDUCTION

Sometimes substantial reduction in code size:

Depending on the complexity, you may not see this in real use cases. But for beginners, the simplification

of the program makes a difference.

Application C lines C++ lines Reduction

Vector addition 268 140 47.7%

Pi computation 306 166 45.8%

Ocean simulation 1386 533 61.5%

Particle simulation 733 601 18.0%

Radix sort 627 593 5.4%

25 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

JAVA ENABLEMENT BY APARAPI

Developer creates
Java™ source Source compiled to class files (bytecode)

using standard compiler (javac)

Classes packaged and deployed
using established Java™ tool chain

Aparapi = Runtime capable of converting Java™ bytecode to OpenCL™

For execution on any
OpenCL™ 1.1+ capable device

OR execute via a thread pool if
OpenCL™ is not available

26 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

JAVA AND APARAPI HSA ENABLEMENT ROADMAP

HSAIL

HSA-Enabled JVM

Application

HSA GPUHSA CPU

HSA Finalizer

CPU ISA GPU ISA

HSA Runtime

LLVM Optimizer

HSAIL

IR

JVM

Application

Aparapi

HSA GPUHSA CPU

HSA Finalizer

CPU ISA GPU ISACPU ISA GPU ISA

JVM

Application

Aparapi

GPUCPU

OpenCL™

HSAIL

JVM

Application

Aparapi

HSA GPUHSA CPU

HSA Finalizer

CPU ISA GPU ISA

27 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

INTRODUCING HSA BOLT – PARALLEL PRIMITIVES LIBRARY FOR HSA

Easily leverage the inherent power efficiency of GPU computing

 Common routines such as scan, sort, reduce, transform

 More advanced routines like heterogeneous pipelines

 Bolt library works with OpenCL or C++ AMP

Enjoy the unique advantages of the HSA platform

 Move the computation, not the data

 Use appropriate computation resource (CPU or GPU or others)

Finally a single source code base for the CPU and GPU!

 Scientists can focus on innovations!

Bolt preview available in AMD APP SDK 2.8.

28 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

0

50

100

150

200

250

300

350

L
O

C

LINES-OF-CODE AND PERFORMANCE FOR DIFFERENT PROGRAMMING MODELS

Copy-back Algorithm Launch Copy Compile Init Performance

Serial CPU TBB Intrinsics+TBB OpenCL™-C OpenCL™ -C++ C++ AMP HSA Bolt

P
e

rfo
rm

a
n

c
e

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0Copy-back

Algorithm

Launch

Copy

Compile

Init.

Copy-back

Algorithm

Launch

Copy

Compile

Copy-back

Algorithm

Launch

Algorithm

Launch

Algorithm

Launch

Algorithm

Launch

Algorithm

Launch

(Exemplary ISV “Hessian” Kernel)

AMD A10-5800K APU with Radeon™ HD Graphics – CPU: 4 cores, 3800MHz (4200MHz Turbo); GPU: AMD Radeon HD 7660D, 6 compute units, 800MHz; 4GB RAM.

Software – Windows 7 Professional SP1 (64-bit OS); AMD OpenCL™ 1.2 AMD-APP (937.2); Microsoft Visual Studio 11 Beta

29 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

OPENCL MODULE FOR OPENCV LIBRARY

Based on OpenCV 2.4, first OCL module released in Nov 2012.

 Implement and maintain an OpenCL module that is optimised for AMD GPU and APU platforms, including

utility functions, low-level vision primitives, and high-level algorithms.

Support any OpenCL 1.1 compatible device, tested on AMD’s, Intel’s and NVIDIA’s GPU.

Designed as a host-level API and device-level kernels.

Requirement: OpenCL SDK, AMD FFT and BLAS library

No prior knowledge of OpenCL required.

30 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

OPENCL MODULE FOR OPENCV LIBRARY

Over 80 kernels are provided with OCL module in 2.4.9 release.

OCL module can run on NVIDIA, Intel and AMD GPUs without any modification.

31 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

OTHER LIBRARIES AND TOOLS

APPML, contains FFT and BLAS functions, primarily targeting AMD GPUS and APUs.

 User specifies problem parameters through library API

 Kernel generator creates tailored OpenCL kernels

 Kernels are dispatched for execution

APP Kernel Analyzer

 static analysis tool to compile, analyse and disassemble OCL kernel for GPUs

APP profiler

 performance analysis tool that gathers data from OCL runtime and GPUs during the execution.

Code Analyst

 gDEBugger, an OpenCL and OpenGL debugger and memory analyser

GPUPerfAPI

 a library can be integrated directly into your application for accessing GPU performance counters.

CodeXL, offers GPU debugging, CPU and GPU profiling, static OpenCL kernel analysis capabilities.

32 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

HSA SOLUTION STACK

CPU(s) GPU(s)
Other

Accelerators

HSA Finalizer

Legacy
Drivers

Application

Domain Specific Libs
(Bolt, OpenCV™, … many others)

HSA Runtime

Application SW

Drivers

Differentiated HW

DirectX
Runtime

Other
Runtime

HSAIL

GPU ISA

OpenCL™

Runtime

HSA Software

Knl Driver

Ctl

33 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

AMD’S OPEN SOURCE COMMITMENT TO HSA

Component Name AMD Specific Rationale

HSA Bolt Library No Enable understanding and debug

OpenCL HSAIL Code Generator No Enable research

LLVM Contributions No Industry and academic collaboration

HSA Assembler No Enable understanding and debug

HSA Runtime No Standardize on a single runtime

HSA Finalizer Yes Enable research and debug

HSA Kernel Driver Yes For inclusion in linux distros

We will open source our linux execution and compilation stack

– Jump start the ecosystem

– Allow a single shared implementation where appropriate

– Enable university research in all areas

34 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

WHERE AM I GOING WITH THIS?

Example ISV workload: Haar Face Detection
Cornerstone Technology for Computer Vision

Software
Vision

workloads

Academic

collaboration
Hardware

35 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

LOOKING FOR FACES IN ALL THE RIGHT PLACES

36 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

LOOKING FOR FACES IN ALL THE RIGHT PLACES

Quick HD Calculations

Search square = 21 x 21

Pixels = 1920 x 1080 = 2,073,600

Search squares = 1900 x 1060 = ~2 Million

37 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

LOOKING FOR DIFFERENT SIZE FACES – BY SCALING THE VIDEO FRAME

38 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

LOOKING FOR DIFFERENT SIZE FACES – BY SCALING THE VIDEO FRAME

More HD Calculations

70% scaling in H and V

Total Pixels = 4.07 Million

Search squares = 3.8 Million

39 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

Feature l

Feature m

Feature p

Feature r

Feature q

HAAR CASCADE STAGES

Feature k

Stage N

Stage N+1

Face still
possible?Yes

No

REJECT
FRAME

40 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

22 CASCADE STAGES, EARLY OUT BETWEEN EACH

STAGE 22STAGE 21STAGE 2STAGE 1

NO FACE

FACE
CONFIRMED

Final HD Calculations

Search squares = 3.8 million

Average features per square = 124

Calculations per feature = 100

Calculations per frame = 47 GCalcs

Calculation Rate

30 frames/sec = 1.4TCalcs/second

60 frames/sec = 2.8TCalcs/second

…and this only gets front-facing faces

41 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

CASCADE DEPTH ANALYSIS

0

5

10

15

20

25
Cascade Depth

20-25

15-20

10-15

5-10

0-5

42 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

UNBALANCING DUE TO EXITS IN EARLIER CASCADE STAGES

Live

Dead

When running on the GPU, we run each search rectangle on a separate work item

Early out algorithms, like HAAR, exhibit divergence between work items

– Some work items exit early

– Their neighbors continue

– SIMD packing suffers as a result

43 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9-22

T
im

e
 (

m
s
)

Cascade Stage

“Trinity” A10-4600M (6CU@497Mhz, 4 cores@2700Mhz)

GPU

CPU

PROCESSING TIME/STAGE

AMD A10 4600M APU with Radeon™ HD Graphics; CPU: 4 cores @ 2.3 MHz (turbo 3.2 GHz); GPU: AMD Radeon HD 7660G,

6 compute units, 685MHz; 4GB RAM; Windows 7 (64-bit); OpenCL™ 1.1 (873.1)

44 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 22

Im
a
g

e
s
/S

e
c

Number of Cascade Stages on GPU

“Trinity” A10-4600M (6CU@497Mhz, 4 cores@2700Mhz)

CPU

HSA

GPU

PERFORMANCE CPU-VS-GPU

AMD A10 4600M APU with Radeon™ HD Graphics; CPU: 4 cores @ 2.3 MHz (turbo 3.2 GHz); GPU: AMD Radeon HD 7660G,

6 compute units, 685MHz; 4GB RAM; Windows 7 (64-bit); OpenCL™ 1.1 (873.1)

45 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

HAAR SOLUTION – RUN DIFFERENT CASCADES ON GPU AND CPU

By seamlessly sharing data between CPU and GPU,

HSA allows the right processor to handle its appropriate workload

+2.5x

-2.5x

INCREASED

PERFORMANCE
DECREASED ENERGY

PER FRAME

46 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

OTHER LEADING ISVs

47 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

WHERE AM I GOING WITH THIS?

University Collaboration Projects

SLAM: Simultaneous Localisation and Mapping
Collaborators:

A. Davison, P. Kelly, R. S. Moreno et al.

Imperial College London

Software
Vision

workloads

Academic

collaboration
Hardware

48 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

 SLAM: Simultaneous Localisation and Mapping

 Given an new scene, camera tries to generate a map of the environment and track its own

position from it

 Previous SLAM systems used low-level map elements like points or fiducial markers.

 We now use higher-level Objects

 Objects provides more meaningful scene understanding

 e.g. With objects, a table detection can 'infer' the floor it lies on.

 Natural occlusion handling

 Physical predictions: Constrain objects to lie on the floor plane → improves detection quality

 Reduced complexity on map optimisation (#Objects <<< # Points)

 More realistic Augmented Reality applications

SLAM

49 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

 We construct a database of scanned objects

 At runtime objects are detected on the GPU

 Generating a map of objects locations/orientations

 The map is immediately used to track the pose of the camera in real-time

 A batch optimisation routine executes on CPU to eliminate drift in camera motion

SLAM | OBJECT LEVEL

50 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

 A pose of a monocular camera is first tracked with PTAM on the CPU

 [Klein et al. ISMAR 08]

 Given a set of frames with known camera poses we build a depth

map on the GPU

 Camera must move to provide disparity information to figure depth

 Generated depth maps used as a first step towards a full 3D object

reconstruction pipeline

 Uses photo-consistency across frames

 Assume lighting remains constant with small camera motion

 Look for a similar looking pixel of Frame A in Frames B, C, D, E ...

 True depth of pixel should generated similar intensities over frames

 Regularise solution to return smooth depths over large pixel areas

 NewCombe et al. ICCV 2011

Real-time Depth Maps from Video

51 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

WHERE AM I GOING WITH THIS?

University Collaboration Projects

Content-based image retrieval on APU clouds
Collaborators:

D. Pedronette, E. Borin, R. Torres UNICAMP, Brazil

M. Breternitz, AMD Research

Software
Vision

workloads

Academic

collaboration
Hardware

52 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

CBIR | Image Re-ranking and Rank Aggregation

“Efficient Image Re-ranking and Rank Aggregation Computation on GPUs”, 10th IEEE International Symposium on Parallel and Distributed Processing with Applications, July, 2012

AMD Opteron 6168 1.9GHz, 12 Cores; ATI FirePro V7800; Ubuntu 10.04; AMD-APP-SDK-v2.4

Contextual rank aggregation algorithm

53 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

SUMMARY

Hardware Software
Vision

workloads

Academic

collaboration

54 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

Q&A

Promoters

Founders

Contributors

Supporters

Associates

55 | Supporting Computer Vision through High Performance GPU Programming | 12 Jan, 2013 | Public

Disclaimer & Attribution
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions

and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited

to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product

differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. There is no

obligation to update or otherwise correct or revise this information. However, we reserve the right to revise this information and to

make changes from time to time to the content hereof without obligation to notify any person of such revisions or changes.

NO REPRESENTATIONS OR WARRANTIES ARE MADE WITH RESPECT TO THE CONTENTS HEREOF AND NO

RESPONSIBILITY IS ASSUMED FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS

INFORMATION.

ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE ARE EXPRESSLY

DISCLAIMED. IN NO EVENT WILL ANY LIABILITY TO ANY PERSON BE INCURRED FOR ANY DIRECT, INDIRECT, SPECIAL

OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF

EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

AMD, the AMD arrow logo, the HSA logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. OpenCL™ is

a trademark of Apple Corp. which is licensed to the Khronos Organization. All other names used in this presentation are for

informational purposes only and may be trademarks of their respective owners.

© 2012 Advanced Micro Devices, Inc.

