
Fine-Grained Task Migration for Graph Algorithms using
Processing in Memory

Paula Aguilera1, Dong Ping Zhang2, Nam Sung Kim3 and Nuwan Jayasena2

1Dept. of Electrical and Computer
Engineering

University of Wisconsin-Madison
paguilera@wisc.edu

2AMD Research
{Dongping.Zhang,

Nuwan.Jayasena}@amd.com

3Dept. of Electrical and Computer
Engineering

University of Illinois Urbana-Champaign
nskim@illinois.edu

Abstract— Graphs are used in a wide variety of application

domains, from social science to machine learning. Graph
algorithms present large numbers of irregular accesses with little
data reuse to amortize the high cost of memory accesses,
requiring high memory bandwidth. Processing in memory (PIM)
implemented through 3D die-stacking can deliver this high
memory bandwidth. In a system with multiple memory modules
with PIM, the in-memory compute logic has low latency and high
bandwidth access to its local memory, while accesses to remote
memory introduce high latency and energy consumption. Ideally,
in such a system, computation and data are partitioned among
the PIM devices to maximize data locality. But the irregular
memory access patterns present in graph applications make it
difficult to guarantee that the computation in each PIM device
will only access its local data. A large number of remote memory
accesses can negate the benefits of using PIM.

In this paper, we examine the feasibility and potential of fine-
grained work migration to reduce remote data accesses in
systems with multiple PIM devices. First, we propose a data-
driven implementation of our study algorithms: breadth-first
search (BFS), single source shortest path (SSSP) and betweenness
centrality (BC) where each PIM has a queue where the vertices
that it needs to process are held. New vertices that need to be
processed are enqueued at the PIM device co-located with the
memory that stores those vertices. Second, we propose hardware
support that takes advantage of PIM to implement highly
efficient queues that improve the performance of the queuing
framework by up to 16.7%. Third, we develop a timing model for
the queueing framework to explore the benefits of work
migration vs. remote memory accesses. And, finally, our analysis
using the above framework shows that naïve task migration can
lead to performance degradations and identifies trade-offs
among data locality, redundant computation, and load balance
among PIM devices that must be taken into account to realize the
potential benefits of fine-grain task migration.

Keywords—Graph Algorithms; Processing In Memory.

I. INTRODUCTION

While processors have gradually increased their computing
capabilities, the main memory has not experienced the same
degree of improvement, particularly falling behind in latency
and energy consumption [1]. At the same time moving data
from the location where it is stored to the processor where it is
used for computation is highly inefficient for applications with
irregular memory access patterns and low data reuse. As a
result, the memory system is becoming responsible for an
increasing percentage of the total system energy consumption.
A solution to this problem is to place the computation closer to

its data, thereby reducing the movement of data through the
memory hierarchy resulting in energy savings and performance
improvement [2].

3D-stacking is an enabling technology that allows multiple
dies to be stacked on top of each other in the same package. A
memory module with processing in memory (PIM), or a PIM
stack, implemented using 3D stacking places one or more
memory dies atop (or under) a logic die implementing compute
capabilities. We study a system (Figure 2) that consists of a
host processor and multiple such PIM stacks. Each in-memory
processor has low-latency, high-bandwidth, and low-energy
access to data in the local memory stacked on top of it. Access
to remote data in other memory modules incur higher latency,
lower bandwidth, and higher energy consumption. Ideally,
computation and data are partitioned among the PIM stacks in
such a way that data locality is maximized. However, some
computations present irregular, data-dependent memory access
patterns and partitioning the data and computation statically
cannot completely eliminate remote memory accesses.

A large number of remote memory accesses can negate the
benefits of PIM. In these situations migrating work to execute
on the PIM device co-located with the data that it accesses can
be more efficient than fetching the data from a remote PIM
module, when the overhead of migrating work is lower than
that of performing remote memory accesses.

Graph processing algorithms are fundamental to many
application domains today. Algorithms such as breadth-first
search, connected components, and shortest path are frequent
in graph analysis. Some of these algorithms are performed over
very large graphs, often consisting of millions of vertices.
Graph algorithms exhibit memory-intensive behavior with
irregular and graph-topology-dependent memory access
patterns and limited data reuse, resulting in high memory
bandwidth demand. These characteristics make them a good
match for PIM systems. However, the irregular memory access
patterns make it challenging to partition the computation and
data across the multiple PIM stacks so that computation is co-
located with its data and remote memory accesses are avoided.
Therefore, we explore work migration techniques targeted
towards graph processing algorithms to improve their
performance in systems with multiple PIM stacks.

A large body of research exists on work and task migration
in the context of distributed systems and large-scale machines.
However, PIM introduces a number of new considerations that
warrant revisiting the topic. The PIM stacks within a single

system, in some ways, resemble non-uniform memory access
(NUMA) architectures. However, the close coupling of PIM to
main memory makes local memory access extremely
inexpensive from both performance and power perspectives
relative to traditional NUMA machines and other forms of
multi-processor systems. Further, the PIM stacks can be
interconnected via memory interfaces enabling efficient, fine-
grain communication (e.g., a single cache line) among them. In
addition, PIM’s proximity to memory enables highly efficient,
hardware-assisted implementations of queue primitives. These
factors justify and enable a finer granularity of tasks than many
of the prior studies. In our study, we consider work migration
at the granularity of the processing performed on a vertex.

In cases where a large graph is distributed across multiple
memory modules, we anticipate the common case is for all
PIM devices to execute the same code on different subsets of
data. Therefore, task migration in these cases does not require
moving code between devices as the code base is identical and
is already available at each PIM stack. Task migration simply
involves communicating vertices, edges, or other data elements
to be processed at a remote stack. Therefore, migrating a task
can be as simple and as low overhead as communicating a
single word (e.g., a vertex ID) to a remote PIM device. In
many ways, this is similar to an active message [3] and does
not require migration of a register set or context state.

First, we propose a queuing framework to implement fine-
grained migration; using this framework, vertex IDs are sent to
the PIM stacks that will process them. Second, we propose
hardware mechanisms that take advantage of PIM’s proximity
to memory to implement efficient queues and reduce the
overhead of work migration. Third, we develop a high level
timing model for our queuing framework to evaluate the
proposed hardware support for efficient queues and to study
the performance of work migration vs. a baseline where
vertices are enqueued in a round robin fashion to the PIM
stacks and remote memory accesses are performed as
necessary. We propose and evaluate a variety of task migration
strategies that range from strict migration on any remote vertex
access to allowing some amount of remote accesses to reduce
redundant computation. We find that load imbalance
negatively impacts performance in all of the algorithms, and
study how to overcome it. We also account and compare the
number of remote vs. local memory accesses performed by the
different approaches and estimate the total energy of the
memory accesses based on the cost of a remote memory access
relative to the cost of a local memory access. This paper makes
the following main contributions:

• Propose a queueing framework to perform light-weight
fine-grained task migration among PIM devices and
introduce hardware mechanisms that take advantage of
PIM to implement efficient queuing (Section III).

• Propose a parameterized timing model to estimate the
performance of graph algorithms implemented atop this
framework (Section IV).

• Use the above timing model to study the performance
trade-offs of work migration under a variety of system
configurations as well as application and graph
characteristics (Section V).

II. BACKGROUND AND MOTIVATION

A. 3D-Stacked Processing In Memory

This work studies PIM architecture implemented using 3D
die stacking technology. 3D stacking allows a compute (PIM)
die implemented in a logic process to be tightly coupled with
memory dies implemented in a DRAM process. This helps
address the problems of high manufacturing costs and low
performance of traditional PIM proposals that integrated
compute units and DRAM on a single die using the same
process technology. 3D stacking provides high-bandwidth and
low-energy memory access from PIM to local DRAM due to
their proximity and the high density of through silicon via
(TSV) interconnections [4]. Applications that require high
memory bandwidth and low data reuse can benefit from PIM.

B. Large Scale Graph Processing

Graphs represent relationships between different objects;
the vertices are the objects and the edges are the relationships
between them. Graphs are common in many different
applications and can span very large data sets. Further, graph
algorithms have input-dependent memory access patterns.

To illustrate the number of remote vertices that are visited
in an example graph algorithm, we look at the behavior of
BFS. BFS traverses a graph starting at the root and processing
all its direct neighbors first before proceeding to process the
next level of neighbors. BFS processes all the vertices that are
at the same distance from the root before to processing any
vertex located one level further. Although this data is taken
from BFS, other graph algorithms show similar characteristics.

We study a Google web graph taken from the Stanford
Network Analysis Project (SNAP) [5], where the vertices are
webpages and the edges represent the hyperlinks between
them. This graph consists of 875,713 vertices and 5,105,039
edges. We evenly partition the graph data structure across a
system with four PIM device 1 , PIM1 through PIM4. We

1 While the specific graph partitioning affects the data locality characteristics,
our interest is in understanding the effectiveness of task migration
independent of the graph partitioning scheme (i.e., not all graphs can be
effectively partitioned). Therefore, we use a simple partitioning here. Further,
we believe effective task migration can avoid the high overheads typically
required in graph partitioning schemes that seek to minimize communication.

Figure 1. Neighbor distribution of a BFS traversal for a graph that has been
partitioned among four PIM stacks. Graph level is the distance from the
root vertex. This figure shows the spatial distribution of the neighbors for
the vertices at each level of the graph that are located on PIM2.

0

2000

4000

6000

8000

10000

12000

14000

6 7 8 9 10 11 12 13 14 15 16 17 18 19

N
od

es

Graph Level

PIM2

STACK1 STACK2 STACK3 STACK4

perform a vertex-based partitioning, where we place equal
numbers of vertices in each of the memory modules. All the
outgoing edges of a vertex are placed on the same PIM as the
vertex. Figure 1 shows the neighbor distribution for the
vertices located in a single PIM device (we arbitrarily select
PIM2) at each level of the graph. The vertices that fall in PIM2
are the only neighbors that are local to PIM2. Neighboring
vertices located in PIM1, PIM3, and PIM4 are remote to PIM2.
As we can see, there is an approximately uniform distribution
of neighbor vertices among all the PIM stacks for this graph,
resulting in the majority of the neighboring vertices being
located in remote PIM devices. Processing such a large number
of remote vertices implies many remote memory accesses,
which can hurt performance and negate the benefits PIM.

There are two commonly used approaches to parallelize
graph algorithms: topology-driven and data-driven [6]. In the
first approach all the vertices are visited regardless of whether
there is work to perform or not. In the second approach vertices
are only visited if they are active and there is work to be done
on them. This second implementation uses a worklist to track
vertices that need processing; threads read active vertices from
the worklist and if, during the processing of a vertex, more
vertices become active, they are written to the worklist.
Updates to the worklist need to be atomic to prevent conflicts
among concurrent updates. While data-driven implementations
are more work-efficient, they can suffer from contention when
multiple threads are updating the shared worklist [6]. For our
work we use the data-driven approach.

III. SYSTEM ARCHITECTURE

In this section we first describe the system that we model
for our experiments, and later we propose hardware support for
efficient implementation of shared data structures in our
system of study.

A. System Organization

Figure 2 shows our system of study, which consists of a
host processor connected to multiple memory modules. Each
memory module contains one or more memory dies and
computation capabilities on a separate logic die connected
through 3D stacking with the memory dies. In such a system,
memory intensive computations can be offloaded to the PIM
logic. We assume inter-PIM links that allow each PIM to
access any memory in the system, although it is always lower
performance and higher energy to access remote memory. Our
study system architecture supports a shared, unified virtual
memory address space among the host and PIM devices.
Further, caches are kept coherent between the host and each
PIM device as well as among the PIM devices.

Our study system implements a CPU as our in-memory
processor in each of the memory stacks, which enables the
execution of general purpose programs. However, our
evaluation methodology supports exploring the impact of PIM
processors with greater degrees of parallelism. For our
experiments, we also vary the number of PIM devices from 4
to 16. For our studies we don’t use the host for the
computation, all the computation are performed and evaluated
in the in-memory processors. The host would be in charge of
performing the graph partioning and launching of the PIM
computation, but we do not account for that overhead.

B. Queuing Framework

Our queuing framework consists of two queues per PIM
device. One queue (PULL) is used to read the active vertices
(vertices that require processing in the current iteration of the
algorithm) and the other queue (PUSH) is used to keep track of
the vertices that become active while processing the current
vertices; those neighboring vertices will be processed in the
next iteration of the algorithm. Figure 3 shows the queuing
framework. In work migration, when a vertex is processed, its
neighbors are enqueued to the PIM device where their data is
located, based on the partitioning of the graph data structure. In
work migration vertices will be processed locally. While for
the baseline, when a vertex is processed, its neighbors are
enqueued in a round robin fashion to the PIM devices in the
system. Some vertices will be processed locally and some
remotely. For both approaches some queue operations will be
performed to local memory (local queue) and others to remote
memory (remote queue). This framework is based on an
implementation of BFS for distributed systems [7].

Our queues are an array-based implementation. As there
might be multiple threads simultaneously operating on the
same queue, we use atomics to guarantee isolation and
correctness. Currently we do not impose any restrictions on the
size of the queues.

C. Hardware Support for Efficient Shared Data Structures

As the queues in our framework are shared and can be
accessed by all the threads in the system, atomic instructions
are used to update the index that threads need to use to access
the array-based queues. The use of atomics results in
performance overheads and increased contention.

We propose leveraging the proximity of PIM to memory to
implement hardware support that can serialize the queue
operations and guarantee atomicity without the need for
explicit software atomics, thereby enhancing the performance
of shared queues. Our proposed work migration scheme
benefits directly from these hardware mechanisms while other
applications and execution models may also benefit from
having more efficient shared data structures.

Figure 3. Queuing mechanisms used in our system to implement the graph
algorithms and the work migration mechanisms.

PIM 1 PIM 2 PIM 3 PIM 4

PULL

PUSH

Figure 2. Example system with a host processor and multiple memory
devices with PIM capabilities.

Host processorLogic die with PIM

Memory
dies

Memory stack

 Hardware support for such atomic queues is implemented
in the PIM dies, at the DRAM controllers as shown in Figure
4(a). Each atomic queue does not span multiple memory
modules or multiple memory channels (i.e., all accesses to an
atomic queue go through the same DRAM controller). An
atomic queue is allocated via a special system call that
allocates memory for it and sets up the necessary metadata in
memory, returning a pointer to the metadata structure.

Figure 4(b) shows the metadata structure which contains
information regarding the head and tail of the queue, the
number of elements in it and the memory space reserved for
the data. Atomic queues are word-aligned and each enqueue or
dequeue atomically inserts or removes a single-word entry to
or from the queue. This capability is sufficient to enqueue
vertex IDs or identifiers used in task queues2. An enqueue
operation is issued as a special store operation to the address of
the queue (i.e., the address of the metadata block returned at
queue allocation) and the vertex ID as the data to enqueue. A
dequeue operation is issued as a load instruction to the queue
address. Specialized hardware at the DRAM controllers is
responsible for updating the queue metadata as necessary as
well as atomically performing the requested queue operation.
Atomic queue metadata is allocated in a part of the addresses
space that cannot be cached by the PIM or host processors to
simplify the implementation. Note that this does not lead to
performance overheads as the queue metadata are not
manipulated by the processor after allocation. Further, to
optimize the performance, the queue management hardware
may contain a cache exclusively for storing recently used
queue metadata (as all accesses to the queue must go through
this hardware, its cache has no coherence requirements).

 Once a queue operation starts, all other operations to that
queue are stalled at the serialization point (i.e., DRAM
controller) until the currently executing operation completes.
Queue accesses are only serialized with respect to other
accesses to the same queue. Normal load/store operations as
well as operations to other queues can proceed in parallel.

IV. EVALUATION METHODOLOGY

In this section we present the methodology for evaluating
work migration against the baseline, where data is accessed

2 This functionality is sufficient to enqueue any general data structure by
allocating and populating it outside the queue and atomically enqueuing a
pointer to it.

remotely when needed and no work migration is done. First,
we implement a queuing framework to support a distributed
data-driven implementation of breadth-first search (BFS),
single source shortest path (SSSP) and betweenness centrality
(BC) in our system of study. Second, we look at possible ways
to improve the queue efficiency by taking advantage of PIM.
Third, we develop a timing model to compare work migration
against the baseline. Using both the queuing framework and
the timing model, we compare the performance of work
migration vs. the baseline.

The main purpose of using this framework instead of a
cycle-level simulator is to easily and quickly perform a rapid
exploration of a large parameter space consisting of various
hardware systems, algorithm characteristics, and data sets.

A. Timing Model

 To compare the behavior of work migration vs. the
baseline, we develop the high level timing model shown in
Figure 5. Figure 5(a) shows the baseline, where both the graph
and the computation are partitioned among all the memory
modules but the neighbors of a vertex that is being processed
are enqueued in a round robin fashion to the queues of the
various PIM devices; some vertices are processed locally and
others are processed remotely (performing remote memory
accesses to the vertex data that is located on a remote PIM
stack). Figure 5(b) represents the work migration scenario,
where both the graph and the computation are also partitioned
among all the PIM stacks, but vertices are processed locally;
some queue operations are performed to local queues and
others to remote queues. When a vertex is processed their
neighbors are enqueued to the PIM queue where their data is
located, which may be the local queue or a queue located on a
remote memory module.

 (a) (b)

Figure 4. (a) the hardware support for the atomic queues implemented in the memory controller and (b) the metadata for a queue with three data elements in it.

Head
Tail
Num_items 3
Data_start
Data_end

…

Queue handle
Metadata Data

Memory stack

Logic die

DRAM
scheduler &
controller

Atomic queue
manager

E
xt

er
na

l
in

te
rf

ac
e

PIM compute
unit(s)

Memory die(s)Memory die(s)Memory die(s)Memory die(s)

(a) (b)
Figure 5. Timing model: (a) represents the baseline and (b) represents the
work migration scenario.

PIM 1 PIM 2
S

CL

E

QL

QR

PIM 1 PIM 2
S

CL

E

QL
QR

CR

QR

CL – Compute Local
CR – Compute Remote
E – Enqueue Interval
QL – Queue Local
QR – Queue Remote
S – Service Time

The parameters shown in Figure 5 represent the number of
cycles for each of the key operations in our system. ܮܥ and ܴܥ
model computation time while the remaining parameters model
various aspects of queueing and memory accesses. We use this
parameterized model to study different application
characteristics and a variety of hardware systems. ܮܥ denotes the number of cycles spent doing computation
on a vertex that is local to the PIM. Varying this parameter
allows us to model applications with different amounts of
computation per vertex. BFS is an example of an algorithm that
performs no computation per vertex and has a low ܮܥ value. ܴܥ is the number of cycles spent doing computation on a
vertex that is remote to the PIM in the baseline model. ܴܥ is
not an independent parameter in our model and is computed as ܴܥ = ܮܥ + ܺ ∙ ܥ , which models the remote computation as
consisting of the same computation as a local vertex plus some
number of remote memory accesses. The total remote memory
access overhead during the vertex’s computation is expressed
as the product of the remote memory access communication
overhead ܥ and the number of serialized remote memory
accesses ܺ (sets of independent memory accesses are counted
as a single access in ܺ as those can be issued in parallel to
overlap their latencies). Increasing the value of ܥ allows us to
model systems in which it takes longer to perform a remote
memory access3, and varying ܺ models applications with a
different ratio of computation to remote memory accesses.

Parameter ܳܮ is the number of cycles it takes for a vertex
to arrive at a queue that is in the local memory of the PIM
device performing the enqueue operation. This parameter is
based on the latency of accessing local main memory. ܴܳ is
the number of cycles that it takes a vertex to reach a remote
queue; we define ܴܳ = 	ܮܳ + The service time of a queue .ܥ	
is the time it takes to enqueue or dequeue a vertex and we
represent it as S. This parameter models potential overheads of
using the queues. A naïve queue implementation, such as one
that requires acquiring a global lock will have a high value of ܵ
while more efficient queue implementations will have lower
values. ܧ is the interval between back-to-back enqueues of
vertices issued by a single PIM device. A low value of ܧ
corresponds to more frequent issue of enqueue operations and
models PIM processors with higher operating frequencies or
higher degrees of parallel execution. Note that lowering the
value of ܧ also increases the degree of contention seen by the
queues. Even though multiple processors can issue an enqueue
operation to the same queue, these operations are serialized at
the queue and only one element can be accepted by the queue
at each time interval (as defined by the parameter S); this way
we correctly account for contention at the queue.

We initially assume that atomicity in queue manipulations
is achieved via an atomic modification of the queue pointers
(i.e., atomic increment or decrement of queue pointers). We
model the cost of these atomic operations as equivalent to the

3 Although our framework can be extended to model different communication
delays (i.e., different values of ܥ) for each pair of communicating PIM
devices, our results here use a constant remote access latency for all PIM
devices. We expect this to yield reasonable results on average for applications
with irregular neighbor remote memory accesses, such as the graph
algorithms considered here.

cost of a load to main memory that is serialized with the queue
access. Some atomic operations will be performed to the local
memory and some others to a remote memory, depending on
what PIM the queue that is being accessed is located. We
assume that reaching to any remote PIM constitutes the same
amount of communication overhead (ܥ).

B. Experiment Setup

With the queuing framework and the timing model we first
study the benefits of using PIM to serialize the access to the
queues and later we compare the performance of work
migration vs. the baseline for the selected graph traversal
algorithms. We study the effect of load imbalance and compare
the energy of the memory accesses for the different
approaches. We study a set of algorithms that are core
primitives for graph processing and are fundamental for many
other more complex applications.

For our experiments we choose parameters within a range
that is reasonable for our study system. We choose the latency
to access local memory (QL) to be 64 cycles. We vary the
latency of accessing remote memory (QR) from 64 to 640
cycles, sufficient to cover a broad range of design options from
multiple memory modules within a single package to various
interconnection network options among memory modules in
separate packages. We choose parameter E = 1, as we model
processors that can enqueue one element per cycle. Parameter
S = 1, as the queues can accept one element per cycle.

We measure the number of local and remote memory
accesses for each approach and compare the total relative
memory energy considering the relative energy of a remote
memory access with respect to a local memory access. Similar
to our performance modeling, we consider a range of remote
memory access energies that span a broad range of possible
implementations. We compare the total memory energy for the
cases where the energy of a remote memory access is 1x, 5x
and 10x that of a local memory access.

C. Graph Algorithms

Breadth First Search (BFS) is a fundamental graph
traversal algorithm. It traverses all the vertices in a graph that
are reachable from the source vertex. Initially all vertices are
set as not visited and the traversal starts at the source. First, we
visit the neighbors of the source, which are at a distance 1 from
the source. Then we visit all the neighbors of the vertices at
distance 1 that have not been visited yet. We keep repeating
the same operation until all vertices reachable from the source
vertex have been visited, visiting all vertices at distance k from
the source before visiting any vertex at distance k+1.

 Single Source Shortest Path (SSSP) is a graph analytics
application that computes the shortest path of each node from a
designated source node in a graph with non-negative edge
weights by using a demand-driven modification of the
Bellman-Ford algorithm [8]. Each node maintains an estimate
of its shortest distance from the source called dist. Initially, this
value is infinity for all nodes except for the source, whose
distance is 0. The algorithm proceeds by iteratively updating
distance estimates starting from the source and maintaining a
worklist of nodes whose distances have changed and thus may
cause other distances to be updated.

Betweenness centrality (BC) is a social analysis
application, which is a special case of graph analytics. It is
used to measure the influence a vertex has on a graph. A
vertex’s BC score is related to the fraction of shortest paths
between all vertices that pass through the vertex. In a graph
with n vertices, n breadth-first search graph traversals are
performed one from each vertex in the graph, and augment
each traversal to compute the number of shortest paths passing
through each vertex. The algorithm computes BC in two
stages. First, the distance and shortest path counts from the
source vertex s to every other vertex are determined. Second,
the vertices are revisited starting with the farthest vertex from s
first, and dependencies are accumulated.

Our implementation uses the algorithm proposed by
Madduri et al. [9]. They propose a lock-free parallel algorithm
for BC that achieves better spatial locality by tracking the
successors of each vertex instead of the predecessors as
traditionally proposed by Brandes [10].

D. Workloads

We use three real-world graphs from SNAP [5], described
below, that present different characteristics. TABLE I
summarizes their main characteristics. The diameter of a graph
is the longest shortest path in the graph. There are two types of
distributions: normal, in which most vertices have
approximately the same number of edges, and power-law, in
which some vertices have a very large number of edges while
most vertices have just a few. We use the compressed sparse
row (CSR) representation to store the structure of the graphs.
In this representation vertices and edges are stored in different
arrays and the vertex array stores offsets into the edge array,
providing the offset of the first outgoing edge of each vertex.

Texas road network graph: This graph shows
intersections and end points as vertices and the roads
connecting these intersections or endpoints as edges.

Amazon co-purchasing graph: This graph represents

products that are often bought together on Amazon. Vertices
are products and edges show which ones are bought together.

Pokec social network graph: Pokec is the most popular
on-line social network in Slovakia. It connects more than 1.6
million people. The vertices are the members and the edges
represent their friendship relationships.

V. EVALUATION RESULTS

 In this section we compare the performance of work
migration vs. the baseline case by applying the timing model to
the graph traversal algorithms. We first study the performance
impact of using PIM to serialize the queue operations without
the need for application-level atomics. Later we study the
performance of work migration vs. the baseline and we
propose modifications to improve the performance of work
migration. Finally we study load imbalance in our graph
traversal algorithms and mechanisms to improve load
balancing while maintaining locality.

A. Hardware Support for Efficient Shared Queues

In this section we study the effect of our proposed
mechanisms to take advantage of the proximity of PIM to the
memory to serialize the queue operations guaranteeing
atomicity without the use of explicit software atomics.

Figure 6 shows the performance difference of using explicit
software atomics (sw_atomics) to serialize the queue
operations vs. using PIM (pim_queues). We present results for
BFS for the Amazon and Pokec graphs, when doing migration
for 4, 8 and 16 PIMs. For these experiments we vary the cost of
accessing remote memory QR from 64 to 640 cycles, which is
1x to 10x the cost of accessing local memory QL. The results
are normalized to the performance of pim_queue for 4 PIMs.
We observe that for all cases our proposed mechanism
performs better. The Amazon graph demonstrates a larger
relative benefit, up to 16.7% improvement for 4PIMs when
QR=640, due to the graph having a larger diameter. The

(a) (b)

Figure 6. Performance of using explicit software atomics to update the queues vs. using our proposed mechanisms that uses PIM to serialize the queue
operations. We vary the latency to a remote PIM from 64 to 640 cycles (QR), which is 1x to 10x the latency to a local PIM (QL). Results are normalized.

0.2

0.4

0.6

0.8

1

1.2

1.4

64 128 192 256 320 384 448 512 576 640
Cost of Remote Memory Access

BFS Amazon

PIM_queue 4PIMs SW_atomics 4PIMs PIM_queue 8PIMs
SW_atomics 8PIMs PIM_queue 16PIMs SW_atomics 16PIMs

0.2

0.4

0.6

0.8

1

1.2

1.4

64 128 192 256 320 384 448 512 576 640
Cost of Remote Memory Access

BFS Pokec

PIM_queue 4PIMs SW_atomics 4PIMs PIM_queue 8PIMs
SW_atomics 8PIMs PIM_queue 16PIMs SW_atomics 16PIMs

TABLE I. MAIN CHARACTERISTICS OF THE GRAPHS

Name Description Type # Vertices # Edges Degree Distribution Diameter

Road Roads of Texas undirected 1,379,917 1,921,660 1.4 normal 1054
Amazon Co-purchased products undirected 403,394 3,387,388 8.4 normal 35
Pokec Social network directed 1,632,803 30,622,564 18.7 power 14

maximum improvement that we see for Pokec is 9.7% for
4PIMs when QR=640. A clear advantage of our hardware
support is that when avoiding the use of explicit software
atomics, the performance of BFS is not dependent on the
latency to access remote memory in a remote PIM. This is
because we can eliminate the remote memory accesses from
the critical path, as will be explained in the next section. For
the rest of our results we use this hardware support.

B. Study of Work Migration

In this section we study the performance of work migration
compared to the baseline. We also compare the number of
local and remote memory accesses performed by each of the
policies.

We consider two different alternatives to implement BFS
and SSSP. When processing a vertex these algorithms only
require data related to that vertex or data from the immediate
predecessor vertex (SSSP requires the distance of the
predecessor vertex to the root in order to compute the distance
of the current vertex to the root). First, we avoid the need to
perform remote memory accesses in the critical path by
enqueuing all the neighbors of the vertex that is being
processed to the corresponding PIM. Checking whether those
vertices need to be processed or not is done in the next iteration
of the algorithm requiring only local memory accesses.
However, this may result in redundant enque and deque
operations for vertices that need not be processed. For SSSP
the distance to the predecessor can also be enqueued with the
vertex, we do this by merging both words together into a

 (e) (f)

Figure 7. The first column shows the performance of BFS for the Amazon graph (8PIMs), SSSP with Texas road network (4PIMs) and BC for the Pokec social
network (8PIMs). We vary the latency to a remote PIM from 64 to 640 cycles (QR), which is 1x to 10x the latency to a local PIM (QL). The second column
shows the energy of the memory accesses when the energy of a remote memory access is 1x, 5x and 10x that of a local memory access.

 (a) (b)

 (c) (d)

0.0E+00

2.0E+08

4.0E+08

6.0E+08

8.0E+08

1.0E+09

1.2E+09

1.4E+09

1.6E+09

1 5 10 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10

Baseline Migration Migration
Remote

Migration Local Migration
Duplicates

Migration
Duplicates Local

SSSP Road 4PIMs

Local Remote

0.0E+00

5.0E+09

1.0E+10

1.5E+10

2.0E+10

2.5E+10

3.0E+10

3.5E+10

64 128 192 256 320 384 448 512 576 640

Cy
cl

es

Cost of Remote Memory Access

SSSP Road 4PIMs

Baseline Migration Migration Remote
Migration Local Migration Duplicates Migration Duplicates Local

0.0E+00
5.0E+06
1.0E+07
1.5E+07
2.0E+07
2.5E+07
3.0E+07
3.5E+07
4.0E+07
4.5E+07
5.0E+07

1 5 10 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10

Baseline Migration Migration
Remote

Migration Local Migration
Duplicates

Migration
Duplicates Local

BFS Amazon 8PIMs

Local Remote

0.0E+00

2.0E+08

4.0E+08

6.0E+08

8.0E+08

1.0E+09

1.2E+09

1.4E+09

64 128 192 256 320 384 448 512 576 640

Cy
cl

es

Cost of Remote Memory Access

BC Pokec 8PIMs

Baseline Migration Remote

0.0E+00

1.0E+08

2.0E+08

3.0E+08

4.0E+08

5.0E+08

6.0E+08

7.0E+08

8.0E+08

9.0E+08

1.0E+09

1 5 10 1 5 10

Baseline Migration Remote

BC Pokec 8PIMs

Local Remote

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

64 128 192 256 320 384 448 512 576 640

Cy
cl

es

Cost of Remote Memory Access

BFS Amazon 8PIMs

Baseline Migration Migration Remote
Migration Local Migration Duplicates Migration Duplicates Local

longer word that can be enqueued and dequeued atomically.
The second alternative first checks whether the neighboring
vertices of the vertex that is currently being processed need to
be processed or not before enqueuing them. This ensures that
only the vertices that need to be processed are enqueued, but
requires performing remote memory accesses in the cases
where the neighbors are located in different PIM stacks. We
call these two implementations migration and migration
remote:

• Migration: This policy eliminates remote memory
accesses from the critical path by enqueuing all the
neighbors of the vertex that is being processed to their
corresponding PIM. The check is later done locally.
This policy results in vertices being enqueued and
dequeued that might not need to be processed, but
avoids remote memory accesses in the critical path.

• Migration remote: This policy performs remote
memory accesses to check if the neighboring vertices
need to be processed. If a vertex needs to be processed
it is enqueued to its PIM. This policy avoids enqueuing
and dequeuing extra vertices at the cost of having
remote memory accesses in the critical path.

In the case of BC, when a vertex is being processed data
from its successors is needed. So memory accesses to the
successors are unavoidable and these memory accesses can be
local or remote. For BC we use the second implementation
alternative.

Enqueueing and dequeueing all the neighboring vertices to
later check whether they need to be processed can be
expensive. The higher degree a graph has, the more expensive
migration becomes. We propose the following modifications to
migration in order to reduce the number of vertices that are
enqueued and still avoid remote memory accesses in the
critical path:

• Migration local: Similar to migration, but this policy
checks the vertices that are local to the PIM to ensure
they need to be processed in the next iteration before
enqueuing them. Since the vertex is local, the memory
accesses to the vertex’s data are local. Vertices that are
not local are still enqueued without validation.

• Migration duplicates: This policy is similar to
migration, but the queues are implemented as a hash
table to eliminate duplicate vertices. Every time an
element is enqueued, the hash table is looked up to see
if the element is already present, and if it is not the
element would be written to the table. This results in
extra memory accesses when enqueuing, but they are
overlapped with the computation. This table could be
implemented in software. Accesses to the hash table
would still be serialized by our previously proposed
hardware mechanisms introduced in Section III.C.

• Migration duplicates local: Combination of migration
local and migration duplicates.

Figure 7 shows the performance and memory accesses of
the different migration policies vs. the baseline for BFS, SSSP
and BC, as we increase the cost of accessing remote memory.
We vary the cost of accessing remote memory (QR) from 64 to

640 cycles. We compute the total memory access energy as the
energy of a remote memory access is 1x, 5x and 10x that of a
local memory access. We study the behavior of the Amazon,
road and Pokec graphs, when using 4 and 8 PIM devices. We
only show a subset of the results due to space constraints. The
presented data is sufficiently representative of the rest and can
help understand the trade-offs of the different policies. For
BFS and SSSP, Figure 7(a) and (c), we can use the migration
policy where all the neighboring vertices of the vertex being
processed are enqueued, and checking whether the vertex has
been visited (or whether the distance to the vertex is lower, for
SSSP) is done locally. Migration results in a large number of
local memory accesses and only some enqueue operations are
remote. As the remote queue operations are overlapped with
the computation, the performance of migration is not affected
by the increasing cost of accessing remote memory. But the
performance of migration is worse than that of the baseline and
migration remote. Although the number of remote memory
accesses is low for migration, the large number of local
memory accesses results in high total memory energy, as
Figure 7(b) and (d) show.

In Figure 7(a) and (c) we observe that the performance of
migration improves with the proposed modifications
(migration local, migration duplicates and migration
duplicates local) and they are also not affected by the cost of
accessing remote memory. On the contrary, the performance of
baseline worsens as the cost of accessing remote memory
increases. At lower QR the baseline performs better, as it
achieves better load balance among PIMs by enqueuing
vertices in a round robin way, and the effect of QR is lower and
less important than the impact of load imbalance. The baseline
performs multiple remote memory accesses when processing a
vertex remotely, to read the graph data structure that is stored
in remote PIMs. These accesses are often interdependent
resulting in multiple serialized round trip accesses to the
remote PIM. For example, the vertex array needs to be
accessed first to find the corresponding index to the edge array,
which contains the neighbors of a vertex. On the contrary,
migration and its variants are not sensitive to higher latency to
remote PIM stacks as accesses to a remote PIM are performed
when a vertex is enqueued to a remote queue, which is off the
critical path. These new policies based on migration result in
fewer local memory accesses than migration as shown in
Figure 7(b) and (d), lowering the total memory energy.

In Figure 7(a) we observe that the performance of
migration remote worsens with QR. This is due to the remote
memory accesses that this policy performs to check what
vertices to enqueue. For low QR, baseline performs better than
migration remote as it is more balanced, but as QR increases a
low number of remote memory accesses becomes more
important. The number of remote memory accesses for
migration remote is however larger than for the other migration
policies; as can be seen in Figure 7(b). This is not the case for
SSSP with the Texas road graph; as Figure 7(c) shows. The
Texas road network graph presents few edges per vertex, and
high locality in its neighbors, meaning that the neighbors of a
vertex are likely to be on the same PIM stack as the parent.
Therefore, migration remote is not affected by QR as most of
the memory accesses are local. This is why migration remote

results in better performance than any of the other migration
policies. As migration remote does check and, if necessary,
updates the distance to the neighboring vertices before
enqueuing the vertex, only the vertices that need to be
processed are enqueued, considerably reducing the number of
memory accesses.

In Figure 7(e) for BC, we use migration remote; we need to
perform memory access and update a vertex’s data before it is
enqueued. This is the reason why migration remote’s
performance increases with the cost of accessing remote
memory. In this case migration remote’s performance is worse
than the performance of the baseline due to the load imbalance.
The degree of imbalance is input-dependent, but we observe it
in all the studied graphs. As the number of PIMs increases,
load imbalance goes up. Figure 7(f) shows the memory
accesses performed by both policies. We observe that the
number of remote memory accesses is larger for the baseline
than for migration remote, the baseline results in more energy
spent in memory accesses. In the next section we explore the
effect of work stealing to improve the performance of
migration remote while still trying to maintain locality.

C. Load Balancing and Locality

As shown before for the BC case, the baseline performs
better than migration remote although the baseline results in
more remote memory accesses. For BFS and SSSP, the
baseline performs better than the rest of the policies for low

QR. For all cases this is due to the load imbalance in the graph
algorithms and the graphs.

In this section we study work stealing implemented on top
of migration remote and DL work stealing implemented on top
of migration duplicates local to address the load imbalance
problem. We implement a traditional work stealing
mechanism, where threads first execute the vertices that are in
their local queue and once their local queue is empty, if there is
still work to be completed in the system, they steal from the
queue with the most elements. When the cost of accessing
remote memory and local memory is close, work stealing
reduces load imbalance and the number of vertices processed
by each PIM is similar. As the cost of accessing remote
memory increases, the cost of processing vertices remotely
goes up, and fewer vertices will be processed remotely,
naturally reducing the degree of work stealing and decreasing
the number of remote memory accesses. Work stealing is more
efficient as the cost of accessing remote memory goes up.

Figure 8 shows the performance of work stealing for BC
using the Pokec graph and both work stealing and DL work
stealing for BFS using the Amazon graph. Figure 8(a) shows
the results for BC, and work stealing always performs better
than the baseline. This is because work stealing first executes
as many vertices locally as possible and then it executes
vertices remotely (stealing from other queues) to balance the
load of the different threads. Figure 8(c) shows the results for
BFS, work stealing is the best performing policy for lower QR.
For higher QR, DL work stealing performs better as it is not

(c) (d)
Figure 8. The first column shows the performance of work stealing for BC with the Pokec graph (8PIMs) and work stealing and DL work stealing for BFS with
Amazon graph (8PIMs). We vary the latency to a remote PIM from 64 to 640 cycles (QR), which is 1x to 10x the latency to a local PIM (QL). The second
column shows the energy of the memory accesses when the energy of a remote memory access is 1x, 5x and 10x the energy of a local memory access.

 (a) (b)

0.0E+00

2.0E+08

4.0E+08

6.0E+08

8.0E+08

1.0E+09

1.2E+09

1.4E+09

64 128 192 256 320 384 448 512 576 640

Cy
cl

es

Cost of Remote Memory Access

BC Pokec 8PIMs

Baseline Migration Remote Work Stealing

0.0E+00

1.0E+08

2.0E+08

3.0E+08

4.0E+08

5.0E+08

6.0E+08

7.0E+08

8.0E+08

9.0E+08

1.0E+09

1 5 10 1 5 10 1 5 10 1 5 10

Baseline Migration Remote Work Stealing QR=64 Work Stealing QR=640

BC Pokec 8PIMs

Local Remote

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

64 128 192 256 320 384 448 512 576 640

Cy
cl

es

Cost of Remote Memory Access

BFS Amazon 8PIMs

Baseline Migration Remote Migration Duplicates Local Work Stealing DL Work Stealing

0.0E+00
5.0E+06
1.0E+07
1.5E+07
2.0E+07
2.5E+07
3.0E+07
3.5E+07
4.0E+07
4.5E+07
5.0E+07

1 5 10 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10

Baseline Migration
Remote

Migration
Duplicates

Local

Work
Stealing
QR=64

Work
Stealing
QR=640

DL Work
Stealing
QR=64

DL Work
Stealing
QR=640

BFS Amazon 8PIMs

Local Remote

affected by QR. Figure 8(b) and (d) show the memory accesses
performed by the different policies and the total memory
access energy as the energy of a remote memory access is 1x,
5x and 10x that of a local memory access. We see that work
stealing performs more remote memory accesses and less local
memory accesses than migration remote, but less remote
memory accesses than the baseline. In Figure 8(b) we see that
DL work stealing presents more local memory accesses than
work stealing, but less than migration duplicates local. Figure
8(b) and (d) show that for both work migration policies the
number of remote memory accesses decreases as the cost of
accessing remote memory goes up resulting in lower total
memory energy with QR.

We observe that there is a trade-off between performance
and energy; both work stealing and DL work stealing provide
better performance for higher energy than other policies such
as migration remote or migration duplicates local, since in
order to balance the load it needs to steal vertices and execute
them remotely, but this difference decreases as QR increases.

VI. RELATED WORK

The common approach taken in distributed systems to
process graphs is to accumulate all the edges corresponding to
non-local vertices and send them to the owner processor at the
end of each iteration. There is thus an all-to-all communication
step at the end of each frontier expansion. Inter-processor
communication is considered a significant communication
overhead, the cost of this step will depend on the particular
network topology and the partitioning of the graph [7]. Our
proposed fine-grained work migration overlaps the
communication with the computation, improving performance.

Hardware approaches have also been proposed to improve
the performance of data-driven graph traversal
implementations by reducing the contention on the shared data
structures [11], but these often require dedicated hardware to
hold the queue’s data or metadata or both. As a result, these
schemes incur high overheads to provision these dedicated
structures and scalability is still limited by the hardware
availability. Dedicated hardware also complicates context
switching as the dedicated hardware must either be included in
the context state or continue to be occupied by inactive
contexts. Dedicated accelerators for parallel graph processing
have also been proposed in the context of PIM [12]. We use
general purpose processors, which are able to execute a variety
of applications not only graph algorithms.

Lock-free structures have also been proposed based on the
computation of prefix-sums of multiple, parallel agents
accessing the queue (so that each knows which location within
the queue to access in parallel) [13]. However, these are
difficult to orchestrate over loosely-coupled execution engines,
as is the case with multiple processors that may not reside on
the same chip. Our proposal does not require coordination
between the different PIMs to compute the prefix-sums.

VII. CONCLUSION

This work shows that the irregular memory access patterns
present in graph algorithms make it challenging to implement
these algorithms obtaining high data locality on systems with

multiple PIM devices. We propose fine-grained work
migration to maximize data locality in PIM-based systems.

This work proposes a framework to explore a large space of
graph application behaviors and system architectures. We
provide insight regarding what characteristics of the graph
applications and system parameters result in efficient work
migration to take advantage of data locality.

Hardware support for efficient queue implementations can
considerably increase the performance of our work migration
mechanisms. We present a technique for such hardware
support that leverages the DRAM controller in PIM to enforce
serialization of operations to the same queue, eliminating the
overheads of atomics. Our method also does not require
dedicated hardware storage, allowing it to scale to arbitrary
numbers of queues and arbitrarily large queues, limited only by
the DRAM capacity of the memory modules.

To conclude we can say that fine-grain task migration
results in lower number of remote memory accesses in graph
algorithms compared to the baseline, but naïve migration
schemes increase the number of local memory accesses which
can hurt both performance and energy. We proposed
optimizations to fine-grain task migration to reduce the number
of vertices that are redundantly enqueued/dequeued, mitigating
the increase in local memory accesses and still keeping remote
memory accesses off the application’s critical path. We also
evaluated work stealing mechanisms to further improve the
performance of fine-grain task migration by reducing the load
imbalance at the cost of some loss of data locality in the
memory accesses.

REFERENCES

[1] D. A. Patterson, "Latency Lags Bandwith," Commun. ACM, 2004.

[2] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu and M.
Ignatowski, "TOP-PIM: Throughput-oriented Programmable Processing
in Memory," in HPDC, 2014.

[3] T. von Eicken, D. E. Culler, S. Copen Goldstein and K. Erik Schauser,
"Active Messages: A Mechanism for Integrated Communication and
Computation," in ISCA, 1992.

[4] D. Chang, B. Gyungsu, K. Hoyoung, A. Minwook, R. Soojung, N. Kim
and M. Schulte, "Reevaluating the latency claims of 3D stacked
memories," in ASP-DAC, 2013.

[5] J. Leskovec and A. Krevl, "Stanford Network Analysis Project (SNAP),"
2014. [Online]. Available: http://snap.stanford.edu/data.

[6] R. Nasre, M. Burtscher and K. Pingali, "Data-Driven Versus Topology-
driven Irregular Computations on GPUs," in IPDPS, 2013.

[7] A. Buluc and K. Madduri, "Parallel Breadth-first Search on Distributed
Memory Systems," in SC, 2011.

[8] "https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm,"
[Online].

[9] K. Madduri, D. Ediger, K. Jiang, D. A. Bader and D. Chavarria-Miranda,
"A faster parallel algorithm and efficient multithreaded implementations
for evaluating betweenness centrality on massive datasets," in IPDPS,
2009.

[10] U. Brandes, "A Faster Algorithm for Betweenness Centrality," in Journal
of Mathematical Sociology, 2001.

[11] J. Y. Kim and C. Batten, "Accelerating Irregular Algorithms on GPGPUs
Using Fine-Grain Hardware Worklists," in MICRO, 2014.

[12] J. Ahn, S. Hong, S. Yoo, O. Mutlu and K. Choi, "A Scalable Processing-
in-memory Accelerator for Parallel Graph Processing," in ISCA, 2015.

[13] R. Nasre, M. Burtscher and K. Pingali, "Atomic-free Irregular
Computations on GPUs," in GPGPU-6 at ASPLOS, 2013.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /blex
 /blsy
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /Cmb10
 /CMB10
 /Cmbsy10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /Cmbx10
 /CMBX10
 /Cmbx12
 /CMBX12
 /Cmbx5
 /CMBX5
 /Cmbx6
 /CMBX6
 /Cmbx7
 /CMBX7
 /Cmbx8
 /CMBX8
 /Cmbx9
 /CMBX9
 /Cmbxsl10
 /CMBXSL10
 /Cmbxti10
 /CMBXTI10
 /Cmcsc10
 /CMCSC10
 /Cmcsc8
 /CMCSC8
 /Cmcsc9
 /CMCSC9
 /Cmdunh10
 /CMDUNH10
 /Cmex10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /Cmff10
 /CMFF10
 /Cmfi10
 /CMFI10
 /Cmfib8
 /CMFIB8
 /Cminch
 /CMINCH
 /Cmitt10
 /CMITT10
 /Cmmi10
 /CMMI10
 /Cmmi12
 /CMMI12
 /Cmmi5
 /CMMI5
 /Cmmi6
 /CMMI6
 /Cmmi7
 /CMMI7
 /Cmmi8
 /CMMI8
 /Cmmi9
 /CMMI9
 /Cmmib10
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /Cmr10
 /CMR10
 /Cmr12
 /CMR12
 /Cmr17
 /CMR17
 /Cmr5
 /CMR5
 /Cmr6
 /CMR6
 /Cmr7
 /CMR7
 /Cmr8
 /CMR8
 /Cmr9
 /CMR9
 /Cmsl10
 /CMSL10
 /Cmsl12
 /CMSL12
 /Cmsl8
 /CMSL8
 /Cmsl9
 /CMSL9
 /Cmsltt10
 /CMSLTT10
 /Cmss10
 /CMSS10
 /Cmss12
 /CMSS12
 /Cmss17
 /CMSS17
 /Cmss8
 /CMSS8
 /Cmss9
 /CMSS9
 /Cmssbx10
 /CMSSBX10
 /Cmssdc10
 /CMSSDC10
 /Cmssi10
 /CMSSI10
 /Cmssi12
 /CMSSI12
 /Cmssi17
 /CMSSI17
 /Cmssi8
 /CMSSI8
 /Cmssi9
 /CMSSI9
 /Cmssq8
 /CMSSQ8
 /Cmssqi8
 /CMSSQI8
 /Cmsy10
 /CMSY10
 /Cmsy5
 /CMSY5
 /Cmsy6
 /CMSY6
 /Cmsy7
 /CMSY7
 /Cmsy8
 /CMSY8
 /Cmsy9
 /CMSY9
 /Cmtcsc10
 /CMTCSC10
 /Cmtex10
 /CMTEX10
 /Cmtex8
 /CMTEX8
 /Cmtex9
 /CMTEX9
 /Cmti10
 /CMTI10
 /Cmti12
 /CMTI12
 /Cmti7
 /CMTI7
 /Cmti8
 /CMTI8
 /Cmti9
 /CMTI9
 /Cmtt10
 /CMTT10
 /Cmtt12
 /CMTT12
 /Cmtt8
 /CMTT8
 /Cmtt9
 /CMTT9
 /Cmu10
 /CMU10
 /Cmvtt10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Dcb10
 /Dcbx10
 /Dcbxsl10
 /Dcbxti10
 /Dccsc10
 /Dcitt10
 /Dcr10
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /DoulosSIL
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /KrutiDev040Bold
 /KrutiDev040BoldItalic
 /KrutiDev040Condensed
 /KrutiDev040Italic
 /KrutiDev040Thin
 /KrutiDev040Wide
 /KrutiDev060
 /KrutiDev060Bold
 /KrutiDev060BoldItalic
 /KrutiDev060Condensed
 /KrutiDev060Italic
 /KrutiDev060Thin
 /KrutiDev060Wide
 /KrutiDev070
 /KrutiDev070Condensed
 /KrutiDev070Italic
 /KrutiDev070Thin
 /KrutiDev070Wide
 /KrutiDev080
 /KrutiDev080Condensed
 /KrutiDev080Italic
 /KrutiDev080Wide
 /KrutiDev090
 /KrutiDev090Bold
 /KrutiDev090BoldItalic
 /KrutiDev090Condensed
 /KrutiDev090Italic
 /KrutiDev090Thin
 /KrutiDev090Wide
 /KrutiDev100
 /KrutiDev100Bold
 /KrutiDev100BoldItalic
 /KrutiDev100Condensed
 /KrutiDev100Italic
 /KrutiDev100Thin
 /KrutiDev100Wide
 /KrutiDev120
 /KrutiDev120Condensed
 /KrutiDev120Thin
 /KrutiDev120Wide
 /KrutiDev130
 /KrutiDev130Condensed
 /KrutiDev130Thin
 /KrutiDev130Wide
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MTExtraTiger
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SILDoulosIPA
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /SymbolTiger
 /SymbolTigerExpert
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Tiger
 /TigerExpert
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

