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Abstract— Graphs are used in a wide variety of application 

domains, from social science to machine learning. Graph 
algorithms present large numbers of irregular accesses with little 
data reuse to amortize the high cost of memory accesses, 
requiring high memory bandwidth. Processing in memory (PIM) 
implemented through 3D die-stacking can deliver this high 
memory bandwidth. In a system with multiple memory modules 
with PIM, the in-memory compute logic has low latency and high 
bandwidth access to its local memory, while accesses to remote 
memory introduce high latency and energy consumption. Ideally, 
in such a system, computation and data are partitioned among 
the PIM devices to maximize data locality. But the irregular 
memory access patterns present in graph applications make it 
difficult to guarantee that the computation in each PIM device 
will only access its local data. A large number of remote memory 
accesses can negate the benefits of using PIM. 

In this paper, we examine the feasibility and potential of fine-
grained work migration to reduce remote data accesses in 
systems with multiple PIM devices. First, we propose a data-
driven implementation of our study algorithms: breadth-first 
search (BFS), single source shortest path (SSSP) and betweenness 
centrality (BC) where each PIM has a queue where the vertices 
that it needs to process are held. New vertices that need to be 
processed are enqueued at the PIM device co-located with the 
memory that stores those vertices. Second, we propose hardware 
support that takes advantage of PIM to implement highly 
efficient queues that improve the performance of the queuing 
framework by up to 16.7%. Third, we develop a timing model for 
the queueing framework to explore the benefits of work 
migration vs. remote memory accesses. And, finally, our analysis 
using the above framework shows that naïve task migration can 
lead to performance degradations and identifies trade-offs 
among data locality, redundant computation, and load balance 
among PIM devices that must be taken into account to realize the 
potential benefits of fine-grain task migration. 

Keywords—Graph Algorithms; Processing In Memory. 

I. INTRODUCTION 

While processors have gradually increased their computing 
capabilities, the main memory has not experienced the same 
degree of improvement, particularly falling behind in latency 
and energy consumption [1]. At the same time moving data 
from the location where it is stored to the processor where it is 
used for computation is highly inefficient for applications with 
irregular memory access patterns and low data reuse. As a 
result, the memory system is becoming responsible for an 
increasing percentage of the total system energy consumption. 
A solution to this problem is to place the computation closer to 

its data, thereby reducing the movement of data through the 
memory hierarchy resulting in energy savings and performance 
improvement [2].  

3D-stacking is an enabling technology that allows multiple 
dies to be stacked on top of each other in the same package. A 
memory module with processing in memory (PIM), or a PIM 
stack, implemented using 3D stacking places one or more 
memory dies atop (or under) a logic die implementing compute 
capabilities. We study a system (Figure 2) that consists of a 
host processor and multiple such PIM stacks. Each in-memory 
processor has low-latency, high-bandwidth, and low-energy 
access to data in the local memory stacked on top of it. Access 
to remote data in other memory modules incur higher latency, 
lower bandwidth, and higher energy consumption. Ideally, 
computation and data are partitioned among the PIM stacks in 
such a way that data locality is maximized. However, some 
computations present irregular, data-dependent memory access 
patterns and partitioning the data and computation statically 
cannot completely eliminate remote memory accesses.  

A large number of remote memory accesses can negate the 
benefits of PIM. In these situations migrating work to execute 
on the PIM device co-located with the data that it accesses can 
be more efficient than fetching the data from a remote PIM 
module, when the overhead of migrating work is lower than 
that of performing remote memory accesses. 

Graph processing algorithms are fundamental to many 
application domains today. Algorithms such as breadth-first 
search, connected components, and shortest path are frequent 
in graph analysis. Some of these algorithms are performed over 
very large graphs, often consisting of millions of vertices. 
Graph algorithms exhibit memory-intensive behavior with 
irregular and graph-topology-dependent memory access 
patterns and limited data reuse, resulting in high memory 
bandwidth demand. These characteristics make them a good 
match for PIM systems. However, the irregular memory access 
patterns make it challenging to partition the computation and 
data across the multiple PIM stacks so that computation is co-
located with its data and remote memory accesses are avoided. 
Therefore, we explore work migration techniques targeted 
towards graph processing algorithms to improve their 
performance in systems with multiple PIM stacks.  

A large body of research exists on work and task migration 
in the context of distributed systems and large-scale machines. 
However, PIM introduces a number of new considerations that 
warrant revisiting the topic. The PIM stacks within a single 



system, in some ways, resemble non-uniform memory access 
(NUMA) architectures. However, the close coupling of PIM to 
main memory makes local memory access extremely 
inexpensive from both performance and power perspectives 
relative to traditional NUMA machines and other forms of 
multi-processor systems. Further, the PIM stacks can be 
interconnected via memory interfaces enabling efficient, fine-
grain communication (e.g., a single cache line) among them. In 
addition, PIM’s proximity to memory enables highly efficient, 
hardware-assisted implementations of queue primitives. These 
factors justify and enable a finer granularity of tasks than many 
of the prior studies. In our study, we consider work migration 
at the granularity of the processing performed on a vertex. 

In cases where a large graph is distributed across multiple 
memory modules, we anticipate the common case is for all 
PIM devices to execute the same code on different subsets of 
data. Therefore, task migration in these cases does not require 
moving code between devices as the code base is identical and 
is already available at each PIM stack. Task migration simply 
involves communicating vertices, edges, or other data elements 
to be processed at a remote stack. Therefore, migrating a task 
can be as simple and as low overhead as communicating a 
single word (e.g., a vertex ID) to a remote PIM device. In 
many ways, this is similar to an active message [3] and does 
not require migration of a register set or context state.  

First, we propose a queuing framework to implement fine-
grained migration; using this framework, vertex IDs are sent to 
the PIM stacks that will process them. Second, we propose 
hardware mechanisms that take advantage of PIM’s proximity 
to memory to implement efficient queues and reduce the 
overhead of work migration. Third, we develop a high level 
timing model for our queuing framework to evaluate the 
proposed hardware support for efficient queues and to study 
the performance of work migration vs. a baseline where 
vertices are enqueued in a round robin fashion to the PIM 
stacks and remote memory accesses are performed as 
necessary. We propose and evaluate a variety of task migration 
strategies that range from strict migration on any remote vertex 
access to allowing some amount of remote accesses to reduce 
redundant computation. We find that load imbalance 
negatively impacts performance in all of the algorithms, and 
study how to overcome it. We also account and compare the 
number of remote vs. local memory accesses performed by the 
different approaches and estimate the total energy of the 
memory accesses based on the cost of a remote memory access 
relative to the cost of a local memory access. This paper makes 
the following main contributions: 

• Propose a queueing framework to perform light-weight 
fine-grained task migration among PIM devices and 
introduce hardware mechanisms that take advantage of 
PIM to implement efficient queuing (Section III).  

• Propose a parameterized timing model to estimate the 
performance of graph algorithms implemented atop this 
framework (Section IV). 

• Use the above timing model to study the performance 
trade-offs of work migration under a variety of system 
configurations as well as application and graph 
characteristics (Section V). 

II. BACKGROUND AND MOTIVATION 

A. 3D-Stacked Processing In Memory 

This work studies PIM architecture implemented using 3D 
die stacking technology. 3D stacking allows a compute (PIM) 
die implemented in a logic process to be tightly coupled with 
memory dies implemented in a DRAM process. This helps 
address the problems of high manufacturing costs and low 
performance of traditional PIM proposals that integrated 
compute units and DRAM on a single die using the same 
process technology. 3D stacking provides high-bandwidth and 
low-energy memory access from PIM to local DRAM due to 
their proximity and the high density of through silicon via 
(TSV) interconnections [4]. Applications that require high 
memory bandwidth and low data reuse can benefit from PIM.  

B. Large Scale Graph Processing 

Graphs represent relationships between different objects; 
the vertices are the objects and the edges are the relationships 
between them. Graphs are common in many different 
applications and can span very large data sets. Further, graph 
algorithms have input-dependent memory access patterns.  

To illustrate the number of remote vertices that are visited 
in an example graph algorithm, we look at the behavior of 
BFS. BFS traverses a graph starting at the root and processing 
all its direct neighbors first before proceeding to process the 
next level of neighbors. BFS processes all the vertices that are 
at the same distance from the root before to processing any 
vertex located one level further. Although this data is taken 
from BFS, other graph algorithms show similar characteristics. 

We study a Google web graph taken from the Stanford 
Network Analysis Project (SNAP) [5], where the vertices are 
webpages and the edges represent the hyperlinks between 
them. This graph consists of 875,713 vertices and 5,105,039 
edges. We evenly partition the graph data structure across a 
system with four PIM device 1 , PIM1 through PIM4. We 

                                                           
1 While the specific graph partitioning affects the data locality characteristics, 
our interest is in understanding the effectiveness of task migration 
independent of the graph partitioning scheme (i.e., not all graphs can be 
effectively partitioned). Therefore, we use a simple partitioning here. Further, 
we believe effective task migration can avoid the high overheads typically 
required in graph partitioning schemes that seek to minimize communication. 

Figure 1. Neighbor distribution of a BFS traversal for a graph that has been 
partitioned among four PIM stacks. Graph level is the distance from the 
root vertex. This figure shows the spatial distribution of the neighbors for 
the vertices at each level of the graph that are located on PIM2.  
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perform a vertex-based partitioning, where we place equal 
numbers of vertices in each of the memory modules. All the 
outgoing edges of a vertex are placed on the same PIM as the 
vertex. Figure 1 shows the neighbor distribution for the 
vertices located in a single PIM device (we arbitrarily select 
PIM2) at each level of the graph. The vertices that fall in PIM2 
are the only neighbors that are local to PIM2. Neighboring 
vertices located in PIM1, PIM3, and PIM4 are remote to PIM2. 
As we can see, there is an approximately uniform distribution 
of neighbor vertices among all the PIM stacks for this graph, 
resulting in the majority of the neighboring vertices being 
located in remote PIM devices. Processing such a large number 
of remote vertices implies many remote memory accesses, 
which can hurt performance and negate the benefits PIM.  

There are two commonly used approaches to parallelize 
graph algorithms: topology-driven and data-driven [6]. In the 
first approach all the vertices are visited regardless of whether 
there is work to perform or not. In the second approach vertices 
are only visited if they are active and there is work to be done 
on them. This second implementation uses a worklist to track 
vertices that need processing; threads read active vertices from 
the worklist and if, during the processing of a vertex, more 
vertices become active, they are written to the worklist. 
Updates to the worklist need to be atomic to prevent conflicts 
among concurrent updates. While data-driven implementations 
are more work-efficient, they can suffer from contention when 
multiple threads are updating the shared worklist [6]. For our 
work we use the data-driven approach. 

III. SYSTEM ARCHITECTURE 

In this section we first describe the system that we model 
for our experiments, and later we propose hardware support for 
efficient implementation of shared data structures in our 
system of study. 

A. System Organization 

Figure 2 shows our system of study, which consists of a 
host processor connected to multiple memory modules. Each 
memory module contains one or more memory dies and 
computation capabilities on a separate logic die connected 
through 3D stacking with the memory dies. In such a system, 
memory intensive computations can be offloaded to the PIM 
logic. We assume inter-PIM links that allow each PIM to 
access any memory in the system, although it is always lower 
performance and higher energy to access remote memory. Our 
study system architecture supports a shared, unified virtual 
memory address space among the host and PIM devices. 
Further, caches are kept coherent between the host and each 
PIM device as well as among the PIM devices.  

Our study system implements a CPU as our in-memory 
processor in each of the memory stacks, which enables the 
execution of general purpose programs. However, our 
evaluation methodology supports exploring the impact of PIM 
processors with greater degrees of parallelism. For our 
experiments, we also vary the number of PIM devices from 4 
to 16. For our studies we don’t use the host for the 
computation, all the computation are performed and evaluated 
in the in-memory processors. The host would be in charge of 
performing the graph partioning and launching of the PIM 
computation, but we do not account for that overhead. 

B. Queuing Framework 

Our queuing framework consists of two queues per PIM 
device. One queue (PULL) is used to read the active vertices 
(vertices that require processing in the current iteration of the 
algorithm) and the other queue (PUSH) is used to keep track of 
the vertices that become active while processing the current 
vertices; those neighboring vertices will be processed in the 
next iteration of the algorithm. Figure 3 shows the queuing 
framework. In work migration, when a vertex is processed, its 
neighbors are enqueued to the PIM device where their data is 
located, based on the partitioning of the graph data structure. In 
work migration vertices will be processed locally. While for 
the baseline, when a vertex is processed, its neighbors are 
enqueued in a round robin fashion to the PIM devices in the 
system. Some vertices will be processed locally and some 
remotely. For both approaches some queue operations will be 
performed to local memory (local queue) and others to remote 
memory (remote queue). This framework is based on an 
implementation of BFS for distributed systems [7].  

Our queues are an array-based implementation. As there 
might be multiple threads simultaneously operating on the 
same queue, we use atomics to guarantee isolation and 
correctness. Currently we do not impose any restrictions on the 
size of the queues. 

C. Hardware Support for Efficient Shared Data Structures 

As the queues in our framework are shared and can be 
accessed by all the threads in the system, atomic instructions 
are used to update the index that threads need to use to access 
the array-based queues. The use of atomics results in 
performance overheads and increased contention. 

We propose leveraging the proximity of PIM to memory to 
implement hardware support that can serialize the queue 
operations and guarantee atomicity without the need for 
explicit software atomics, thereby enhancing the performance 
of shared queues. Our proposed work migration scheme 
benefits directly from these hardware mechanisms while other 
applications and execution models may also benefit from 
having more efficient shared data structures.  

Figure 3. Queuing mechanisms used in our system to implement the graph 
algorithms and the work migration mechanisms. 
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Figure 2. Example system with a host processor and multiple memory 
devices with PIM capabilities. 
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 Hardware support for such atomic queues is implemented 
in the PIM dies, at the DRAM controllers as shown in Figure 
4(a). Each atomic queue does not span multiple memory 
modules or multiple memory channels (i.e., all accesses to an 
atomic queue go through the same DRAM controller). An 
atomic queue is allocated via a special system call that 
allocates memory for it and sets up the necessary metadata in 
memory, returning a pointer to the metadata structure.  

Figure 4(b) shows the metadata structure which contains 
information regarding the head and tail of the queue, the 
number of elements in it and the memory space reserved for 
the data. Atomic queues are word-aligned and each enqueue or 
dequeue atomically inserts or removes a single-word entry to 
or from the queue. This capability is sufficient to enqueue 
vertex IDs or identifiers used in task queues2. An enqueue 
operation is issued as a special store operation to the address of 
the queue (i.e., the address of the metadata block returned at 
queue allocation) and the vertex ID as the data to enqueue. A 
dequeue operation is issued as a load instruction to the queue 
address. Specialized hardware at the DRAM controllers is 
responsible for updating the queue metadata as necessary as 
well as atomically performing the requested queue operation. 
Atomic queue metadata is allocated in a part of the addresses 
space that cannot be cached by the PIM or host processors to 
simplify the implementation. Note that this does not lead to 
performance overheads as the queue metadata are not 
manipulated by the processor after allocation. Further, to 
optimize the performance, the queue management hardware 
may contain a cache exclusively for storing recently used 
queue metadata (as all accesses to the queue must go through 
this hardware, its cache has no coherence requirements). 

 Once a queue operation starts, all other operations to that 
queue are stalled at the serialization point (i.e., DRAM 
controller) until the currently executing operation completes. 
Queue accesses are only serialized with respect to other 
accesses to the same queue. Normal load/store operations as 
well as operations to other queues can proceed in parallel.  

IV. EVALUATION METHODOLOGY 

In this section we present the methodology for evaluating 
work migration against the baseline, where data is accessed 

                                                           
2 This functionality is sufficient to enqueue any general data structure by 
allocating and populating it outside the queue and atomically enqueuing a 
pointer to it. 

remotely when needed and no work migration is done. First, 
we implement a queuing framework to support a distributed 
data-driven implementation of breadth-first search (BFS), 
single source shortest path (SSSP) and betweenness centrality 
(BC) in our system of study. Second, we look at possible ways 
to improve the queue efficiency by taking advantage of PIM. 
Third, we develop a timing model to compare work migration 
against the baseline. Using both the queuing framework and 
the timing model, we compare the performance of work 
migration vs. the baseline.  

The main purpose of using this framework instead of a 
cycle-level simulator is to easily and quickly perform a rapid 
exploration of a large parameter space consisting of various 
hardware systems, algorithm characteristics, and data sets.  

A. Timing Model  

 To compare the behavior of work migration vs. the 
baseline, we develop the high level timing model shown in 
Figure 5. Figure 5(a) shows the baseline, where both the graph 
and the computation are partitioned among all the memory 
modules but the neighbors of a vertex that is being processed 
are enqueued in a round robin fashion to the queues of the 
various PIM devices; some vertices are processed locally and 
others are processed remotely (performing remote memory 
accesses to the vertex data that is located on a remote PIM 
stack). Figure 5(b) represents the work migration scenario, 
where both the graph and the computation are also partitioned 
among all the PIM stacks, but vertices are processed locally; 
some queue operations are performed to local queues and 
others to remote queues. When a vertex is processed their 
neighbors are enqueued to the PIM queue where their data is 
located, which may be the local queue or a queue located on a 
remote memory module. 

   (a)                                                                                                                            (b) 

Figure 4.  (a) the hardware support for the atomic queues implemented in the memory controller and (b) the metadata for a queue with three data elements in it.  
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The parameters shown in Figure 5 represent the number of 
cycles for each of the key operations in our system. ܮܥ and ܴܥ 
model computation time while the remaining parameters model 
various aspects of queueing and memory accesses. We use this 
parameterized model to study different application 
characteristics and a variety of hardware systems.  ܮܥ denotes the number of cycles spent doing computation 
on a vertex that is local to the PIM. Varying this parameter 
allows us to model applications with different amounts of 
computation per vertex. BFS is an example of an algorithm that 
performs no computation per vertex and has a low ܮܥ value. ܴܥ  is the number of cycles spent doing computation on a 
vertex that is remote to the PIM in the baseline model. ܴܥ is 
not an independent parameter in our model and is computed as ܴܥ = ܮܥ + ܺ ∙ ܥ , which models the remote computation as 
consisting of the same computation as a local vertex plus some 
number of remote memory accesses. The total remote memory 
access overhead during the vertex’s computation is expressed 
as the product of the remote memory access communication 
overhead ܥ  and the number of serialized remote memory 
accesses ܺ (sets of independent memory accesses are counted 
as a single access in ܺ as those can be issued in parallel to 
overlap their latencies). Increasing the value of ܥ allows us to 
model systems in which it takes longer to perform a remote 
memory access3, and varying ܺ  models applications with a 
different ratio of computation to remote memory accesses.  

Parameter ܳܮ is the number of cycles it takes for a vertex 
to arrive at a queue that is in the local memory of the PIM 
device performing the enqueue operation. This parameter is 
based on the latency of accessing local main memory. ܴܳ is 
the number of cycles that it takes a vertex to reach a remote 
queue; we define ܴܳ = 	ܮܳ +  The service time of a queue .ܥ	
is the time it takes to enqueue or dequeue a vertex and we 
represent it as S. This parameter models potential overheads of 
using the queues. A naïve queue implementation, such as one 
that requires acquiring a global lock will have a high value of ܵ 
while more efficient queue implementations will have lower 
values. ܧ  is the interval between back-to-back enqueues of 
vertices issued by a single PIM device. A low value of ܧ 
corresponds to more frequent issue of enqueue operations and 
models PIM processors with higher operating frequencies or 
higher degrees of parallel execution. Note that lowering the 
value of ܧ also increases the degree of contention seen by the 
queues. Even though multiple processors can issue an enqueue 
operation to the same queue, these operations are serialized at 
the queue and only one element can be accepted by the queue 
at each time interval (as defined by the parameter S); this way 
we correctly account for contention at the queue. 

We initially assume that atomicity in queue manipulations 
is achieved via an atomic modification of the queue pointers 
(i.e., atomic increment or decrement of queue pointers). We 
model the cost of these atomic operations as equivalent to the 

                                                           
3 Although our framework can be extended to model different communication 
delays (i.e., different values of ܥ ) for each pair of communicating PIM 
devices, our results here use a constant remote access latency for all PIM 
devices. We expect this to yield reasonable results on average for applications 
with irregular neighbor remote memory accesses, such as the graph 
algorithms considered here. 

cost of a load to main memory that is serialized with the queue 
access. Some atomic operations will be performed to the local 
memory and some others to a remote memory, depending on 
what PIM the queue that is being accessed is located. We 
assume that reaching to any remote PIM constitutes the same 
amount of communication overhead (ܥ).   

B. Experiment Setup 

With the queuing framework and the timing model we first 
study the benefits of using PIM to serialize the access to the 
queues and later we compare the performance of work 
migration vs. the baseline for the selected graph traversal 
algorithms. We study the effect of load imbalance and compare 
the energy of the memory accesses for the different 
approaches. We study a set of algorithms that are core 
primitives for graph processing and are fundamental for many 
other more complex applications. 

For our experiments we choose parameters within a range 
that is reasonable for our study system. We choose the latency 
to access local memory (QL) to be 64 cycles. We vary the 
latency of accessing remote memory (QR) from 64 to 640 
cycles, sufficient to cover a broad range of design options from 
multiple memory modules within a single package to various 
interconnection network options among memory modules in 
separate packages. We choose parameter E = 1, as we model 
processors that can enqueue one element per cycle. Parameter 
S = 1, as the queues can accept one element per cycle.  

We measure the number of local and remote memory 
accesses for each approach and compare the total relative 
memory energy considering the relative energy of a remote 
memory access with respect to a local memory access. Similar 
to our performance modeling, we consider a range of remote 
memory access energies that span a broad range of possible 
implementations. We compare the total memory energy for the 
cases where the energy of a remote memory access is 1x, 5x 
and 10x that of a local memory access. 

C. Graph Algorithms 

Breadth First Search (BFS) is a fundamental graph 
traversal algorithm. It traverses all the vertices in a graph that 
are reachable from the source vertex. Initially all vertices are 
set as not visited and the traversal starts at the source. First, we 
visit the neighbors of the source, which are at a distance 1 from 
the source. Then we visit all the neighbors of the vertices at 
distance 1  that have not been visited yet. We keep repeating 
the same operation until all vertices reachable from the source 
vertex have been visited, visiting all vertices at distance k from 
the source before visiting any vertex at distance k+1. 

 Single Source Shortest Path (SSSP) is a graph analytics 
application that computes the shortest path of each node from a 
designated source node in a graph with non-negative edge 
weights by using a demand-driven modification of the 
Bellman-Ford algorithm [8]. Each node maintains an estimate 
of its shortest distance from the source called dist. Initially, this 
value is infinity for all nodes except for the source, whose 
distance is 0. The algorithm proceeds by iteratively updating 
distance estimates starting from the source and maintaining a 
worklist of nodes whose distances have changed and thus may 
cause other distances to be updated. 



Betweenness centrality (BC) is a social analysis 
application, which is a special case of graph analytics. It is 
used to measure the influence a vertex has on a graph. A 
vertex’s BC score is related to the fraction of shortest paths 
between all vertices that pass through the vertex. In a graph 
with n vertices, n breadth-first search graph traversals are 
performed one from each vertex in the graph, and augment 
each traversal to compute the number of shortest paths passing 
through each vertex. The algorithm computes BC in two 
stages. First, the distance and shortest path counts from the 
source vertex s to every other vertex are determined. Second, 
the vertices are revisited starting with the farthest vertex from s 
first, and dependencies are accumulated.  

Our implementation uses the algorithm proposed by 
Madduri et al. [9]. They propose a lock-free parallel algorithm 
for BC that achieves better spatial locality by tracking the 
successors of each vertex instead of the predecessors as 
traditionally proposed by Brandes [10]. 

D. Workloads 

We use three real-world graphs from SNAP [5], described 
below, that present different characteristics. TABLE I 
summarizes their main characteristics. The diameter of a graph 
is the longest shortest path in the graph. There are two types of 
distributions: normal, in which most vertices have 
approximately the same number of edges, and power-law, in 
which some vertices have a very large number of edges while 
most vertices have just a few. We use the compressed sparse 
row (CSR) representation to store the structure of the graphs. 
In this representation vertices and edges are stored in different 
arrays and the vertex array stores offsets into the edge array, 
providing the offset of the first outgoing edge of each vertex. 

Texas road network graph: This graph shows 
intersections and end points as vertices and the roads 
connecting these intersections or endpoints as edges.  

Amazon co-purchasing graph: This graph represents 

products that are often bought together on Amazon. Vertices 
are products and edges show which ones are bought together.  

Pokec social network graph: Pokec is the most popular 
on-line social network in Slovakia. It connects more than 1.6 
million people. The vertices are the members and the edges 
represent their friendship relationships.  

V. EVALUATION RESULTS 

 In this section we compare the performance of work 
migration vs. the baseline case by applying the timing model to 
the graph traversal algorithms. We first study the performance 
impact of using PIM to serialize the queue operations without 
the need for application-level atomics. Later we study the 
performance of work migration vs. the baseline and we 
propose modifications to improve the performance of work 
migration. Finally we study load imbalance in our graph 
traversal algorithms and mechanisms to improve load 
balancing while maintaining locality. 

A. Hardware Support for Efficient Shared Queues  

In this section we study the effect of our proposed 
mechanisms to take advantage of the proximity of PIM to the 
memory to serialize the queue operations guaranteeing 
atomicity without the use of explicit software atomics.  

Figure 6 shows the performance difference of using explicit 
software atomics (sw_atomics) to serialize the queue 
operations vs. using PIM (pim_queues). We present results for 
BFS for the Amazon and Pokec graphs, when doing migration 
for 4, 8 and 16 PIMs. For these experiments we vary the cost of 
accessing remote memory QR from 64 to 640 cycles, which is 
1x to 10x the cost of accessing local memory QL. The results 
are normalized to the performance of pim_queue for 4 PIMs. 
We observe that for all cases our proposed mechanism 
performs better. The Amazon graph demonstrates a larger 
relative benefit, up to 16.7% improvement for 4PIMs when 
QR=640, due to the graph having a larger diameter. The 

(a)                                                                                                                                      (b)  

Figure 6. Performance of using explicit software atomics to update the queues vs. using our proposed mechanisms that uses PIM to serialize the queue 
operations. We vary the latency to a remote PIM from 64 to 640 cycles (QR), which is 1x to 10x the latency to a local PIM (QL). Results are normalized.
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TABLE I. MAIN CHARACTERISTICS OF THE GRAPHS  

Name Description Type # Vertices  # Edges Degree Distribution Diameter 

Road Roads of Texas undirected 1,379,917 1,921,660 1.4 normal 1054 
Amazon Co-purchased products undirected 403,394 3,387,388 8.4 normal 35 
Pokec Social network directed 1,632,803 30,622,564 18.7 power 14 



maximum improvement that we see for Pokec is 9.7% for 
4PIMs when QR=640. A clear advantage of our hardware 
support is that when avoiding the use of explicit software 
atomics, the performance of BFS is not dependent on the 
latency to access remote memory in a remote PIM. This is 
because we can eliminate the remote memory accesses from 
the critical path, as will be explained in the next section. For 
the rest of our results we use this hardware support. 

B. Study of Work Migration 

In this section we study the performance of work migration 
compared to the baseline. We also compare the number of 
local and remote memory accesses performed by each of the 
policies.  

We consider two different alternatives to implement BFS 
and SSSP. When processing a vertex these algorithms only 
require data related to that vertex or data from the immediate 
predecessor vertex (SSSP requires the distance of the 
predecessor vertex to the root in order to compute the distance 
of the current vertex to the root). First, we avoid the need to 
perform remote memory accesses in the critical path by 
enqueuing all the neighbors of the vertex that is being 
processed to the corresponding PIM. Checking whether those 
vertices need to be processed or not is done in the next iteration 
of the algorithm requiring only local memory accesses. 
However, this may result in redundant enque and deque 
operations for vertices that need not be processed. For SSSP 
the distance to the predecessor can also be enqueued with the 
vertex, we do this by merging both words together into a 

    (e)                                                                                        (f)  

Figure 7. The first column shows the performance of BFS for the Amazon graph (8PIMs), SSSP with Texas road network (4PIMs) and BC for the Pokec social 
network (8PIMs). We vary the latency to a remote PIM from 64 to 640 cycles (QR), which is 1x to 10x the latency to a local PIM (QL). The second column 
shows the energy of the memory accesses when the energy of a remote memory access is 1x, 5x and 10x that of a local memory access.  
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longer word that can be enqueued and dequeued atomically. 
The second alternative first checks whether the neighboring 
vertices of the vertex that is currently being processed need to 
be processed or not before enqueuing them. This ensures that 
only the vertices that need to be processed are enqueued, but 
requires performing remote memory accesses in the cases 
where the neighbors are located in different PIM stacks. We 
call these two implementations migration and migration 
remote: 

• Migration: This policy eliminates remote memory 
accesses from the critical path by enqueuing all the 
neighbors of the vertex that is being processed to their 
corresponding PIM. The check is later done locally. 
This policy results in vertices being enqueued and 
dequeued that might not need to be processed, but 
avoids remote memory accesses in the critical path. 

• Migration remote: This policy performs remote 
memory accesses to check if the neighboring vertices 
need to be processed. If a vertex needs to be processed 
it is enqueued to its PIM. This policy avoids enqueuing 
and dequeuing extra vertices at the cost of having 
remote memory accesses in the critical path. 

In the case of BC, when a vertex is being processed data 
from its successors is needed. So memory accesses to the 
successors are unavoidable and these memory accesses can be 
local or remote. For BC we use the second implementation 
alternative.  

Enqueueing and dequeueing all the neighboring vertices to 
later check whether they need to be processed can be 
expensive. The higher degree a graph has, the more expensive 
migration becomes. We propose the following modifications to 
migration in order to reduce the number of vertices that are 
enqueued and still avoid remote memory accesses in the 
critical path: 

• Migration local: Similar to migration, but this policy 
checks the vertices that are local to the PIM to ensure 
they need to be processed in the next iteration before 
enqueuing them. Since the vertex is local, the memory 
accesses to the vertex’s data are local. Vertices that are 
not local are still enqueued without validation. 

• Migration duplicates: This policy is similar to 
migration, but the queues are implemented as a hash 
table to eliminate duplicate vertices. Every time an 
element is enqueued, the hash table is looked up to see 
if the element is already present, and if it is not the 
element would be written to the table. This results in 
extra memory accesses when enqueuing, but they are 
overlapped with the computation. This table could be 
implemented in software. Accesses to the hash table 
would still be serialized by our previously proposed 
hardware mechanisms introduced in Section III.C. 

• Migration duplicates local: Combination of migration 
local and migration duplicates. 

Figure 7 shows the performance and memory accesses of 
the different migration policies vs. the baseline for BFS, SSSP 
and BC, as we increase the cost of accessing remote memory. 
We vary the cost of accessing remote memory (QR) from 64 to 

640 cycles. We compute the total memory access energy as the 
energy of a remote memory access is 1x, 5x and 10x that of a 
local memory access. We study the behavior of the Amazon, 
road and Pokec graphs, when using 4 and 8 PIM devices. We 
only show a subset of the results due to space constraints. The 
presented data is sufficiently representative of the rest and can 
help understand the trade-offs of the different policies. For 
BFS and SSSP, Figure 7(a) and (c), we can use the migration 
policy where all the neighboring vertices of the vertex being 
processed are enqueued, and checking whether the vertex has 
been visited (or whether the distance to the vertex is lower, for 
SSSP) is done locally. Migration results in a large number of 
local memory accesses and only some enqueue operations are 
remote. As the remote queue operations are overlapped with 
the computation, the performance of migration is not affected 
by the increasing cost of accessing remote memory. But the 
performance of migration is worse than that of the baseline and 
migration remote. Although the number of remote memory 
accesses is low for migration, the large number of local 
memory accesses results in high total memory energy, as 
Figure 7(b) and (d) show. 

In Figure 7(a) and (c) we observe that the performance of 
migration improves with the proposed modifications 
(migration local, migration duplicates and migration 
duplicates local) and they are also not affected by the cost of 
accessing remote memory. On the contrary, the performance of 
baseline worsens as the cost of accessing remote memory 
increases. At lower QR the baseline performs better, as it 
achieves better load balance among PIMs by enqueuing 
vertices in a round robin way, and the effect of QR is lower and 
less important than the impact of load imbalance. The baseline 
performs multiple remote memory accesses when processing a 
vertex remotely, to read the graph data structure that is stored 
in remote PIMs. These accesses are often interdependent 
resulting in multiple serialized round trip accesses to the 
remote PIM. For example, the vertex array needs to be 
accessed first to find the corresponding index to the edge array, 
which contains the neighbors of a vertex. On the contrary, 
migration and its variants are not sensitive to higher latency to 
remote PIM stacks as accesses to a remote PIM are performed 
when a vertex is enqueued to a remote queue, which is off the 
critical path. These new policies based on migration result in 
fewer local memory accesses than migration as shown in 
Figure 7(b) and (d), lowering the total memory energy. 

In Figure 7(a) we observe that the performance of 
migration remote worsens with QR. This is due to the remote 
memory accesses that this policy performs to check what 
vertices to enqueue. For low QR, baseline performs better than 
migration remote as it is more balanced, but as QR increases a 
low number of remote memory accesses becomes more 
important. The number of remote memory accesses for 
migration remote is however larger than for the other migration 
policies; as can be seen in Figure 7(b).  This is not the case for 
SSSP with the Texas road graph; as Figure 7(c) shows. The 
Texas road network graph presents few edges per vertex, and 
high locality in its neighbors, meaning that the neighbors of a 
vertex are likely to be on the same PIM stack as the parent. 
Therefore, migration remote is not affected by QR as most of 
the memory accesses are local. This is why migration remote 



results in better performance than any of the other migration 
policies. As migration remote does check and, if necessary, 
updates the distance to the neighboring vertices before 
enqueuing the vertex, only the vertices that need to be 
processed are enqueued, considerably reducing the number of 
memory accesses. 

In Figure 7(e) for BC, we use migration remote; we need to 
perform memory access and update a vertex’s data before it is 
enqueued. This is the reason why migration remote’s 
performance increases with the cost of accessing remote 
memory. In this case migration remote’s performance is worse 
than the performance of the baseline due to the load imbalance. 
The degree of imbalance is input-dependent, but we observe it 
in all the studied graphs. As the number of PIMs increases, 
load imbalance goes up. Figure 7(f) shows the memory 
accesses performed by both policies. We observe that the 
number of remote memory accesses is larger for the baseline 
than for migration remote, the baseline results in more energy 
spent in memory accesses. In the next section we explore the 
effect of work stealing to improve the performance of 
migration remote while still trying to maintain locality. 

C. Load Balancing and Locality  

As shown before for the BC case, the baseline performs 
better than migration remote although the baseline results in 
more remote memory accesses. For BFS and SSSP, the 
baseline performs better than the rest of the policies for low 

QR. For all cases this is due to the load imbalance in the graph 
algorithms and the graphs.  

In this section we study work stealing implemented on top 
of migration remote and DL work stealing implemented on top 
of migration duplicates local to address the load imbalance 
problem. We implement a traditional work stealing 
mechanism, where threads first execute the vertices that are in 
their local queue and once their local queue is empty, if there is 
still work to be completed in the system, they steal from the 
queue with the most elements. When the cost of accessing 
remote memory and local memory is close, work stealing 
reduces load imbalance and the number of vertices processed 
by each PIM is similar. As the cost of accessing remote 
memory increases, the cost of processing vertices remotely 
goes up, and fewer vertices will be processed remotely, 
naturally reducing the degree of work stealing and decreasing 
the number of remote memory accesses. Work stealing is more 
efficient as the cost of accessing remote memory goes up.  

Figure 8 shows the performance of work stealing for BC 
using the Pokec graph and both work stealing and DL work 
stealing for BFS using the Amazon graph. Figure 8(a) shows 
the results for BC, and work stealing always performs better 
than the baseline. This is because work stealing first executes 
as many vertices locally as possible and then it executes 
vertices remotely (stealing from other queues) to balance the 
load of the different threads. Figure 8(c) shows the results for 
BFS, work stealing is the best performing policy for lower QR. 
For higher QR, DL work stealing performs better as it is not 

(c) (d)  
Figure 8. The first column shows the performance of work stealing for BC with the Pokec graph (8PIMs) and work stealing and DL work stealing for BFS with 
Amazon graph (8PIMs). We vary the latency to a remote PIM from 64 to 640 cycles (QR), which is 1x to 10x the latency to a local PIM (QL). The second 
column shows the energy of the memory accesses when the energy of a remote memory access is 1x, 5x and 10x the energy of a local memory access. 
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affected by QR. Figure 8(b) and (d) show the memory accesses 
performed by the different policies and the total memory 
access energy as the energy of a remote memory access is 1x, 
5x and 10x that of a local memory access. We see that work 
stealing performs more remote memory accesses and less local 
memory accesses than migration remote, but less remote 
memory accesses than the baseline. In Figure 8(b) we see that 
DL work stealing presents more local memory accesses than 
work stealing, but less than migration duplicates local. Figure 
8(b) and (d) show that for both work migration policies the 
number of remote memory accesses decreases as the cost of 
accessing remote memory goes up resulting in lower total 
memory energy with QR.  

We observe that there is a trade-off between performance 
and energy; both work stealing and DL work stealing provide 
better performance for higher energy than other policies such 
as migration remote or migration duplicates local, since in 
order to balance the load it needs to steal vertices and execute 
them remotely, but this difference decreases as QR increases. 

VI. RELATED WORK 

The common approach taken in distributed systems to 
process graphs is to accumulate all the edges corresponding to 
non-local vertices and send them to the owner processor at the 
end of each iteration. There is thus an all-to-all communication 
step at the end of each frontier expansion. Inter-processor 
communication is considered a significant communication 
overhead, the cost of this step will depend on the particular 
network topology and the partitioning of the graph [7]. Our 
proposed fine-grained work migration overlaps the 
communication with the computation, improving performance.  

Hardware approaches have also been proposed to improve 
the performance of data-driven graph traversal 
implementations by reducing the contention on the shared data 
structures [11], but these often require dedicated hardware to 
hold the queue’s data or metadata or both. As a result, these 
schemes incur high overheads to provision these dedicated 
structures and scalability is still limited by the hardware 
availability. Dedicated hardware also complicates context 
switching as the dedicated hardware must either be included in 
the context state or continue to be occupied by inactive 
contexts. Dedicated accelerators for parallel graph processing 
have also been proposed in the context of PIM [12]. We use 
general purpose processors, which are able to execute a variety 
of applications not only graph algorithms.  

Lock-free structures have also been proposed based on the 
computation of prefix-sums of multiple, parallel agents 
accessing the queue (so that each knows which location within 
the queue to access in parallel) [13]. However, these are 
difficult to orchestrate over loosely-coupled execution engines, 
as is the case with multiple processors that may not reside on 
the same chip. Our proposal does not require coordination 
between the different PIMs to compute the prefix-sums. 

VII. CONCLUSION 

This work shows that the irregular memory access patterns 
present in graph algorithms make it challenging to implement 
these algorithms obtaining high data locality on systems with 

multiple PIM devices. We propose fine-grained work 
migration to maximize data locality in PIM-based systems.  

This work proposes a framework to explore a large space of 
graph application behaviors and system architectures. We 
provide insight regarding what characteristics of the graph 
applications and system parameters result in efficient work 
migration to take advantage of data locality.  

Hardware support for efficient queue implementations can 
considerably increase the performance of our work migration 
mechanisms. We present a technique for such hardware 
support that leverages the DRAM controller in PIM to enforce 
serialization of operations to the same queue, eliminating the 
overheads of atomics. Our method also does not require 
dedicated hardware storage, allowing it to scale to arbitrary 
numbers of queues and arbitrarily large queues, limited only by 
the DRAM capacity of the memory modules.   

To conclude we can say that fine-grain task migration 
results in lower number of remote memory accesses in graph 
algorithms compared to the baseline, but naïve migration 
schemes increase the number of local memory accesses which 
can hurt both performance and energy. We proposed 
optimizations to fine-grain task migration to reduce the number 
of vertices that are redundantly enqueued/dequeued, mitigating 
the increase in local memory accesses and still keeping remote 
memory accesses off the application’s critical path. We also 
evaluated work stealing mechanisms to further improve the 
performance of fine-grain task migration by reducing the load 
imbalance at the cost of some loss of data locality in the 
memory accesses.  
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