
Realizing the Full Potential of Heterogeneity through Processing in Memory

Nuwan Jayasena, Dong Ping Zhang, Amin Farmahini-Farahani, and Mike Ignatowski

AMD Research
Advanced Micro Devices, Inc.

{nuwan.jayasena, dongping.zhang, amin.farmahinifarahani, mike.ignatowski}@amd.com

Abstract

While many processing in memory (PIM) research stud-
ies demonstrate significant improvements in memory system
energy efficiency, relatively little attention has been paid to
the sources of overall energy efficiency of PIM systems. In
this paper, we quantify the sources of energy efficiency of a
GPU-based PIM design and show that selecting low-power
operating points for the in-memory processors is an important
aspect, accounting for a 1.9x improvement in energy efficiency
compared to a mainstream implementation of the evaluated
GPU design. Memory interface efficiency of PIM provides
an additional 3.8x improvement over that. These results also
demonstrate that, due to memory system inefficiencies, im-
plementing high-performance and low-power heterogeneous
cores on the same die attached to a conventional memory
system can only realize a fraction of the overall improvement
realized by PIM (52% in our study). While these results in
general confirm conventional wisdom, we quantify the relative
importance of these processor and memory efficiency factors
across a wide range of benchmarks and encourage further re-
search to enable and leverage the symbiosis between PIM and
heterogeneous computing to further improve energy efficiency.

1. Introduction

Processing in memory (PIM) has been researched over a long
period of time as a technique to address memory system bot-
tlenecks (e.g., [12, 13, 17, 20, 21]). Many of these approaches
required the integration of processing elements and memory
(DRAM) on the same silicon die, hampering adoption in main-
stream implementations. Recent PIM studies have used 3D
die-stacking to incorporate processing and memory within a
single die stack (e.g., [5, 11, 19, 23, 27]). This approach al-
lows logic and memory dies to be fabricated in their respective
process technologies before being incorporated into a 3D stack.
Figure 1 shows an example organization incorporating such a
3D-stacked PIM implementation. The host is a traditional pro-
cessor attached to a number of memory modules (four in this
example). Each memory module consists of DRAM, which
forms the main memory of the host, and a logic die under the
memory dies, which contains the PIM devices.

Improvements in processor energy efficiency and emerg-
ing data-intensive applications cause an increasing fraction of
system energy to be spent on moving data to and from main

HostLogic die with PIM

Memory 

dies
Memory 

module

Figure 1: Example system organization with PIM.

memory. PIM is an effective method to reduce this data move-
ment energy. Consequently, energy efficiency evaluations of
many PIM studies focus on the memory system. However,
a variety of factors also drive PIM implementations to se-
lect energy-efficient processors and less aggressive operating
points. For example, the computations that benefit the most
from PIM are memory-intensive ones. Therefore, PIM cores
need not be designed nor operated in a manner that maximizes
arithmetic throughput. Further, thermal challenges are exacer-
bated for PIM as DRAM data retention times are reduced at
higher temperatures, which also motivates lower PIM power
consumption. The use of such energy-efficient processor cores
also contribute significantly to the overall energy savings of
PIM solutions relative to mainstream systems.

Another important approach to improve energy efficiency
is processor heterogeneity. Research and industry efforts
on heterogeneity fall into two categories. In one, hetero-
geneity is based purely on performance and arises from
high-performance and low-power variants of the same ex-
ecution architecture. For example, “big” cores and “lit-
tle” cores may be incorporated into the same die such that
non-compute-intensive tasks may be executed on the power-
efficient cores [18]. In the other, heterogeneity arises from the
incorporation of accelerators along with general-purpose pro-
cessor cores. Examples include systems with programmable
accelerators specialized for certain classes of applications (e.g.,
GPGPU for data-parallel workloads), configurable accelera-
tors (e.g., FPGAs), and domain-specific or fixed-function ac-
celerators (e.g., image and video codecs). In both categories,
the common characteristic is improved performance or energy
efficiency relative to homogeneous processors through het-
erogeneity. However, as energy efficiency of the execution
units improves, the energy consumed by conventional memory
systems becomes more significant, limiting the overall benefit.

To understand the contributions of processor heterogeneity
and memory interface to the energy efficiency of PIM, we
compare three designs: a host configuration that models a



hypothetical, near-future, high-performance accelerated pro-
cessing unit (APU) that combines CPU and GPU on the same
die with a memory system based on high-speed serial links1

similar to Hybrid Memory Cube (HMC) [22]; a small (APU)
core configuration that implements less aggressive APU cores
on the host die and utilizes the host’s memory system; and a
PIM configuration that implements the same compute units
as the small cores in the memory modules. Comparing host
and small core configurations, we show that heterogeneity
in the execution units is an important source of energy effi-
ciency for PIM. By comparing to the PIM configuration, we
also show that heterogeneous cores with a conventional mem-
ory system result in limited benefits due to memory system
energy consumption and bottlenecks, and that moving the
energy-efficient computing units closer to memory enables
much greater overall energy savings. Therefore, we encourage
further research to better exploit the complementary nature of
PIM and heterogeneous computing. We also identify a few
such directions and highlight technology evolutions necessary
to support them.

2. Sources of PIM Energy Efficiency
In order to quantify the energy efficiency contributions of pro-
cessor heterogeneity and the memory system, we analyze the
system and benchmarks evaluated by Zhang et al. [27] and
extend the energy estimates of that work in two ways. First,
we break down the energy consumption across key compo-
nents of the system. Second, we introduce the small core
configuration to better understand the benefits of processor
and memory interface optimizations. The system organization
is similar to Figure 1, consisting of a host and four memory
modules, and the key parameters are summarized in Table 1.
Host, small core, and PIM devices are APUs and the eval-
uation focuses on their GPU execution engines. The GPUs
are based on AMD’s Graphics Core Next architecture [6], the
host design point was chosen by extrapolating GPU market
trends, and the PIM design point was chosen based on area
and thermal constraints [9, 27]. The PIM devices use a less
aggressive operating point enabling the use of a low-power
process and/or low-leakage devices. Note that the aggregate
PIM compute throughput is 50% of that of the host. The
benchmarks evaluated consist of kernels from subsets of the
Mantevo [15] and Rodinia [8] suites and custom-developed
graph processing algorithms. For PIM execution, data sets
are partitioned and shared data structures are replicated to
minimize communication among PIM devices as is likely to
be the case in realistic, efficient PIM-based implementations.

Our evaluation uses the simulation methodology described
by Zhang et al. [27], which gathers hardware performance
counters during native execution on an existing GPU and uses
machine-learning models to estimate performance and core

1While discrete GPUs are now available with in-package stacked memory,
we do not anticipate the inclusion of all of system memory within the processor
package for high-performance systems in the foreseeable future.

Host Small Core PIM
Number of instances 1 1 4
GPU compute units per instance 64 48 12
GPU clock frequency (MHz) 1000 650 650
Compute throughput per instance (TFLOP/s) 4 2 0.5
Peak DRAM bandwidth (GB/s) 4×160 4×160 640
Technology node (nm) 16 16 16LP
TDP per instance (W) 170 40 10
Leakage (% of TDP) 22.5 5 5

Table 1: System configuration and parameters.

dynamic energy consumption of other design points. This ap-
proach has been shown to have accuracy comparable to cycle-
level simulators [26, 27]. Cache energy consumption is in-
cluded in core dynamic energy and is assumed to scale with the
number of compute units. Processor static power is estimated
assuming an aggressive implementation in a performance-
optimized process for the host, low-leakage devices in the
same process for small cores, and a power-optimized process
and/or low-leakage devices for PIM. We conservatively as-
sume the small core static power can be controlled to the same
degree as the PIM devices, which in reality may not be pos-
sible as the small cores are implemented on the same die as
the host, which may limit the range of process parameters
available to reduce leakage (such as threshold voltages and
oxide thicknesses) compared to a dedicated low-power process
that can be used for PIM devices. Memory interface power
is estimated for the SerDes and interface support logic within
each memory module for communication with the host die.
We assume this interface is similar to HMC and consumes
4.5pJ/b [16, 24] at 160GB/s per memory module. We also
assume interface power consumption is constant regardless of
utilization as idle symbols need to be transmitted when the
interface would otherwise be idle to keep the links aligned
and the recovered clocks locked [4, 7]. Power consumed
by the memory interface on the processor die (in the case
of host and small core) is included in the processor dynamic
power estimate. We model DRAM dynamic power encompass-
ing DRAM core access (4pJ/b [25]), expected TSV traversal
(0.4pJ/b [1]), and expected wire traversal within the memory
module2 (0.8pJ/b [2]). DRAM static power corresponds to
background and refresh power and is estimated at 10% of the
maximum active power of the DRAM dies [23]. We assume
unused compute units are completely power-gated (e.g., PIM
and small cores are power-gated during host execution).

Figure 2 shows the performance of each of the evaluated
kernels on PIM normalized to the execution time on the host.
The execution times for the small cores match that of the host
for memory-limited kernels and PIM for compute-limited ker-
nels. In general, memory-intensive kernels show performance
improvements on PIM (e.g., RW_mem_init) while compute-
bound kernels (e.g., CoMD_EAM3) show performance degra-
dations on PIM due to its reduced compute capabilities. Fur-

2We assume an organization similar to High Bandwidth Memory [3]
within the memory module, where all memory channel TSVs are near the
center of the 3D stack.

2



ther discussion of performance results from this study was
provided by Zhang et al. [27].

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
o

rm
a
li
z
e
d

 P
e
rf

o
rm

a
n

c
e

Figure 2: Normalized performance of PIM relative to host. PF, SP, and RW
refer to ParticleFilter, ShortestPath, and RandomWalk benchmarks.
Multiple kernels of a benchmark are labeled as benchmark_kernel.

0

0.2

0.4

0.6

0.8

1

E
n

e
rg

y
 B

re
a

k
d

o
w

n

Core dynamic Core static DRAM dynamic DRAM static Memory interface

Figure 3: Normalized energy consumption of host (left bar of each group),
small core (middle), and PIM (right). Energy consumed by the
memory interface on the processor die (for host and small core) is
included in core dynamic energy.

Figure 3 shows the energy consumed by the host, small
core, and PIM configurations, normalized to the host. Com-
paring these three configurations enables us to evaluate the
memory access efficiency of PIM independently of the impact
of processor core heterogeneity. We assume the small cores
are implemented close to the host die’s memory interfaces and
do not incur wire traversal overheads on the host die. Note,
however, that these small cores must access memory via the
host’s conventional memory interface.

On average, the small cores reduce energy consumption by
47.5% (1.9× improvement) compared to host execution for the
kernels evaluated when both processor and memory energy are
considered, which highlights the contribution from processor
heterogeneity. PIM further reduces energy by 73.7% (3.8×
improvement) compared to the small cores, which largely cor-
responds to eliminating off-chip memory interface power on
both memory and processor sides3. PIM also benefits from
cases where kernel execution is memory-bound and the ad-
ditional memory bandwidth available to PIM (4× the host
bandwidth) results in faster execution times, reducing en-
ergy due to static and memory interface power. Conversely,
compute-bound kernels take longer to execute on PIM and

3Our assumptions throughout the evaluation bias in favor of the small
cores over PIM, from assuming leakage identical to PIM to ignoring wire
traversal power on the host die. Therefore, in reality, the benefits of memory
interface savings of PIM may be slightly greater than reflected here.

small cores due to their reduced arithmetic capabilities relative
to the host. In these cases, the small cores are more severely
affected due to their higher memory interface power consump-
tion. CoMD_EAM3 is an extreme case where the increased
execution time results in small cores consuming more energy
than host execution.

3. PIM and Heterogeneity
The evaluation above demonstrates the complementary nature
of the energy savings afforded by PIM and heterogeneous
computing. While this study evaluated PIM based on a more
power-efficient implementation of the same architecture as the
host, these results encourage the exploration of other forms of
heterogeneity in conjunction with PIM as well. One such op-
tion is to move all accelerators that are geared towards stream-
ing or high memory bandwidth utilization (e.g., GPGPU) to
PIM and remove them entirely from the host. Such a design
can not only reap the benefits of PIM but, by moving memory-
intensive computations to PIM, may also be able to reduce
host energy consumption by using more energy-efficient mem-
ory interfaces that can still meet the reduced host requirements.
Accelerators that are geared largely for energy efficiency may
also be moved entirely to PIM.

Another form of heterogeneity that can further enhance the
benefits of PIM is to adapt the processor microarchitecture for
in-memory computation. While the above study used an off-
the-shelf APU design for PIM, optimizing the compute units
(e.g., increased load/store issue rates), cache hierarchy (e.g.,
fewer levels and reduced sizes), on-chip interconnect (e.g.,
tailor to distribution of memory channel TSVs), and other
components to better match the characteristics of memory-
bound kernels and to better utilize the stacked memory can
yield additional benefits. Further, the tighter coupling be-
tween compute and memory in PIM could be exploited to
implement novel memory access scheduling and page manage-
ment policies, improved memory-side prefetching, finer-grain
memory power management, in-memory atomics and synchro-
nization primitives, and other such enhancements. While some
PIM proposals (e.g., [5, 19]) incorporate a subset of these el-
ements, they present specific designs with little exploration
of the design space. Therefore, much remains to be done
in quantifying the impact of microarchitectural decisions in
the context of PIM, especially when applied to architectures
such as GPUs that can leverage their existing software ecosys-
tems to ease PIM adoption. Another promising direction is
to implement non-traditional techniques such as approximate
computing [10, 14] and reduced-precision arithmetic as PIM
for even greater energy efficiency gains.

Fully enabling techniques such as those identified above re-
quire evolutions in the system-level and software ecosystems.
Examples of necessary evolutions include memory interfaces
that fully support PIM (including cache coherence and efficient
synchronization), programming abstractions that ease data par-
titioning across multiple memory modules with PIM, system

3



software that can intelligently manage PIM accelerators, task
schedulers that not only exploit processor heterogeneity but
also data-compute affinity, virtual memory management tech-
niques that enable a shared virtual address space among host
and PIM devices, and power management solutions that effi-
ciently allocate power to host or PIM computations. While
many of these are not exclusive to PIM (i.e., accelerators in
general and high-performance memory systems require many
of the same evolutions), significant research opportunities re-
main to be addressed in these areas. However, we believe
the potential energy savings demonstrated in this paper and
the opportunities for even greater improvements motivate and
justify research into realizing the full potential of effectively
combining PIM and heterogeneous computing.

4. Acknowledgments
We would like to thank Joe Greathouse, Alexander Lyashevsky,
and Mitesh Meswani for their contributions to the simulation
methodology used in this work. AMD, the AMD Arrow logo,
and combinations thereof are trademarks of Advanced Micro
Devices, Inc. Other product names used in this publication
are for identification purposes only and may be trademarks of
their respective companies.

References
[1] “ITRS interconnect working group, 2012 update,” www.itrs.net/links/

2012Summer/Interconnect.pptx.
[2] International Technology Roadmap for Semiconductors, 2011 Edition,

2012 update.
[3] High Bandwidth Memory (HBM) DRAM, 2013.
[4] Hybrid Memory Cube Specification 1.0, 2013.
[5] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-

in-memory accelerator for parallel graph processing,” in 42nd Annual
International Symposium on Computer Architecture, 2015.

[6] AMD, “White paper: AMD graphics cores next (GCN) architecture,”
Jun 2012.

[7] A. Athavale and C. Christensen, High-Speed Serial I/O Made Simple,
1st ed., 2005.

[8] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: a benchmark suite for heterogeneous comput-
ing,” in International Symposium on Workload Characterization, 2009.

[9] Y. Eckert, N. Jayasena, and G. Loh, “Thermal feasibility of die-stacked
processing in memory,” in 2nd Workshop on Near-Data Processing,
2014.

[10] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture
support for disciplined approximate programming,” International Con-
ference on Architectural Support for Programming Languages and
Operating Systems, 2012.

[11] A. Farmahini-Farahani, K. Morrow, J. Ahn, and N. Kim., “NDA:
near-DRAM acceleration architecture leveraging commodity DRAM
devices and standard memory modules,” in Int. Symp. on High-
Performance Computer Architecture, 2015.

[12] M. Gokhale, B. Holmes, and K. Iobst, “Processing in memory: the
Terasys massively parallel PIM array,” Computer, vol. 28, no. 4, 1995.

[13] M. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame, J. Draper, J. LaCoss,
J. Granacki, J. Brockman, A. Srivastava, W. Athas, V. Freeh, J. Shin,
and J. Park, “Mapping irregular applications to DIVA, a PIM-based
data-intensive architecture,” in ACM/IEEE Supercomputing Confer-
ence, 1999.

[14] J. Han and M. Orshansky, “Approximate computing: an emerging
paradigm for energy-efficient design,” IEEE European Test Symposium,
2013.

[15] M. Heroux, D. Doerfler, P. Crozier, J. Willenbring, H. Edwards,
A. Williams, M. Rajan, E. Keiter, H. Thornquist, and R. Numrich, “Im-
proving performance via mini-applications,” SAND2009-5574, Tech.
Rep., 2009.

[16] J. Jeddeloh and B. Keeth, “Hybrid memory cube new dram architecture
increases density and performance,” in VLSI Technology (VLSIT), 2012
Symposium on, 2012.

[17] Y. Kang, W. Huang, S.-M. Yoo, D. Keen, Z. Ge, V. Lam, P. Pattnaik,
and J. Torrellas, “FlexRAM: toward an advanced intelligent memory
system,” in International Conference on Computer Design, 1999.

[18] R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan, and D. Tullsen,
“Single-ISA heterogeneous multi-core architectures: the potential for
processor power reduction,” in 36th annual IEEE/ACM International
Symposium on Microarchitecture, 2003.

[19] R. Nair, S. Antao, C. Bertolli, P. Bose, J. Brunheroto, T. Chen, C. Cher,
C. Costa, J. Doi, C. Evangelinos, B. Fleischer, T. Fox, D. Gallo, L. Grin-
berg, J. Gunnels, A. Jacob, P. Jacob, H. Jacobson, T. Karkhanis, C. Kim,
J. Moreno, J. O’Brien, M. Ohmacht, Y. Park, D. Prener, B. Rosenburg,
K. Ryu, O. Sallenave, M. Serrano, P. Siegl, K. Sugavanam, and Z. Sura,
“Active memory cube: a processing-in-memory architecture for exas-
cale systems,” IBM Journal of Research and Development, vol. 59, no.
2/3, pp. 17:1–17:14, March 2015.

[20] M. Oskin, F. Chong, and T. Sherwood, “Active pages: a computation
model for intelligent memory,” in 25th Annual International Sympo-
sium on Computer Architecture, 1998.

[21] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick, “Intelligent RAM (IRAM):
chips that remember and compute,” in IEEE International Solid-State
Circuits Conference, 1997.

[22] J. T. Pawlowski, “Hybrid memory cube (HMC),” in Hot Chips 23,
2011.

[23] S. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian, V. Srinivasan,
A. Buyuktosunoglu, A. Davis, and F. Li, “NDC: analyzing the impact
of 3D-stacked memory+logic devices on MapReduce workloads,” in
International Symposium on Performance Analysis of Systems and
Software, 2014.

[24] G. Sandhu, “Dram scaling and bandwidth challenges,” in NSF Work-
shop on Emerging Technologies for Interconnects (WETI), 2012.

[25] T. Vogelsang, “Understanding the energy consumption of dynamic
random access memories,” in 43rd International Symposium on Mi-
croarchitecture, 2010.

[26] G. Wu, J. Greathouse, A. Lyashevsky, N. Jayasena, and D. Chiou,
“GPGPU performance and power estimation using machine learning,”
in 21st IEEE Symp. on High Performance Computer Architecture,
2015.

[27] D. Zhang, N. Jayasena, A. Lyashevsky, J. Greathouse, L. Xu, and M. Ig-
natowski, “TOP-PIM: throughput-oriented programmable processing
in memory,” in Proceedings of the 23rd International Symposium on
High-performance Parallel and Distributed Computing, 2014.

4

www.itrs.net/links/2012Summer/Interconnect.pptx
www.itrs.net/links/2012Summer/Interconnect.pptx

	Introduction
	Sources of PIM Energy Efficiency
	PIM and Heterogeneity
	Acknowledgments

