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Graph 

• A graph G is a set of vertices V and edges E, 
where E ⊂ V2 

• A graph G may have labels on vertices and/or 
edges 

• The adjacency matrix A of G is defined as 

𝑨𝑖𝑗 =  
1     𝑖𝑓 𝑣𝑖, 𝑣𝑗 ∈ 𝑬
0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Graph Kernel 

• Kernels (from machine learning) between pairs of graphs (roughly speaking -> 
graph similarities) 

 

• Examples: 

– Random Walk Kernel 
• Comparing walks 

– Shortest Path Kernel 
• Comparing shortest paths 

– Subtree Kernel 
• Comparing subtree-like patterns 

– Cyclic Pattern Kernel 
• Comparing simple cycles 

– Graphlet Kernel 
• Counting subgraphs of limited size 
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Shortest-Path Graph Kernel (SPGK) 

• Convert graph to all pair shortest path graph 
– Can use Floyd-Warshall Algorithm 
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Floyd-Warshall 

5 
Original Graph Shortest Path Graph 



Floyd-Warshall 
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Original Graph Shortest Path Graph 



Shortest Path Graph Kernel 

• Apply shortest path kernel 
– 𝐾𝑠𝑝 𝐺, 𝐺′ =   𝐾𝑤𝑎𝑙𝑘(𝑒, 𝑒′)𝑒′∈𝐸′𝑒∈𝐸  

7 



Shortest Path Graph Kernel 

• Apply shortest path kernel 
– 𝐾𝑠𝑝 𝐺, 𝐺′ =   𝐾𝑤𝑎𝑙𝑘(𝑒, 𝑒′)𝑒′∈𝐸′𝑒∈𝐸  

– 𝐾𝑤𝑎𝑙𝑘(𝑒, 𝑒′) = 𝐾𝑛𝑜𝑑𝑒(𝑢, 𝑢′) ∙ 𝐾𝑒𝑑𝑔𝑒(𝑒, 𝑒′) ∙ 𝐾𝑛𝑜𝑑𝑒(𝑣, 𝑣′) 
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Shortest Path Graph Kernel 

• Apply shortest path kernel 
– 𝐾𝑠𝑝 𝐺, 𝐺′ =   𝐾𝑤𝑎𝑙𝑘(𝑒, 𝑒′)𝑒′∈𝐸′𝑒∈𝐸  

– 𝐾𝑤𝑎𝑙𝑘(𝑒, 𝑒′) = 𝐾𝑛𝑜𝑑𝑒(𝑢, 𝑢′) ∙ 𝐾𝑒𝑑𝑔𝑒(𝑒, 𝑒′) ∙ 𝐾𝑛𝑜𝑑𝑒(𝑣, 𝑣′) 

– 𝐾𝑛𝑜𝑑𝑒 is a valid kernel function for comparing two vertices 

– 𝐾𝑒𝑑𝑔𝑒 is a valid kernel function for comparing two edges 
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Shortest Path Graph Kernel 

10 

• Lines 2-4 loop through 
all paths in G1 



Shortest Path Graph Kernel 
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• Lines 2-4 loop through 
all paths in G1 

• Lines 5-7 loop through 
all paths in G2 
 



Shortest Path Graph Kernel 
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• Lines 2-4 loop through 
all paths in G1 

• Lines 5-7 loop through 
all paths in G2 

• Line 8 calculates 
𝐾𝑒𝑑𝑔𝑒(𝑒, 𝑒′) 
 
 



Shortest Path Graph Kernel 
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• Lines 2-4 loop through 
all paths in G1 

• Lines 5-7 loop through 
all paths in G2 

• Line 8 calculates 
𝐾𝑒𝑑𝑔𝑒(𝑒, 𝑒′) 

• Lines 10-11 calculate 
𝐾𝑛𝑜𝑑𝑒(𝑣, 𝑣′) 
 
 
 



Shortest Path Graph Kernel 
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• Lines 2-4 loop through 
all paths in G1 

• Lines 5-7 loop through 
all paths in G2 

• Line 8 calculates 
𝐾𝑒𝑑𝑔𝑒(𝑒, 𝑒′) 

• Lines 10-11 calculate 
𝐾𝑛𝑜𝑑𝑒(𝑣, 𝑣′) 

• Line 12 calculates 
𝐾𝑤𝑎𝑙𝑘(𝑒, 𝑒′) 
 
 
 
 



Drawbacks of SPGK 

• Four for loops and two if statements 

• Redundant computation of 𝐾𝑛𝑜𝑑𝑒(𝑣, 𝑣′) 

• Random memory access  
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Fast Computation of Shortest Path Graph Kernel 
(FCSP) 

• Compute all 𝐾𝑛𝑜𝑑𝑒(𝑣, 𝑣′) before 𝐾𝑤𝑎𝑙𝑘(𝑒, 𝑒′) 

•  Convert shortest path adjacency matrix to 
coordinate lists (sparse matrix representation) 

– One array for value 

– One array for row 

– One array for column 
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• Lines 1-7 compute all 
𝐾𝑛𝑜𝑑𝑒(𝑣, 𝑣′) 
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• Lines 1-7 compute all 
𝐾𝑛𝑜𝑑𝑒(𝑣, 𝑣′) 

• Lines 11-14 loop all 
paths in G1 
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• Lines 1-7 compute all 
𝐾𝑛𝑜𝑑𝑒(𝑣, 𝑣′) 

• Lines 11-14 loop all 
paths in G1 

• Lines 15-18 loop all 
paths in G2 
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• Lines 1-7 compute all 
𝐾𝑛𝑜𝑑𝑒(𝑣, 𝑣′) 

• Lines 11-14 loop all 
paths in G1 

• Lines 15-18 loop all 
paths in G2 

• Line 19 computes 
𝐾𝑒𝑑𝑔𝑒(𝑒, 𝑒′) 
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• Lines 1-7 compute all 
𝐾𝑛𝑜𝑑𝑒(𝑣, 𝑣′) 

• Lines 11-14 loop all 
paths in G1 

• Lines 15-18 loop all 
paths in G2 

• Line 19 computes 
𝐾𝑒𝑑𝑔𝑒(𝑒, 𝑒′) 

• Lines 21-22 fetch 
𝐾𝑛𝑜𝑑𝑒(𝑣, 𝑣′) 
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• Lines 1-7 compute all 
𝐾𝑛𝑜𝑑𝑒(𝑣, 𝑣′) 

• Lines 11-14 loop all 
paths in G1 

• Lines 15-18 loop all 
paths in G2 

• Line 19 computes 
𝐾𝑒𝑑𝑔𝑒(𝑒, 𝑒′) 

• Lines 21-22 fetch 
𝐾𝑛𝑜𝑑𝑒(𝑣, 𝑣′) 

• Line 23 computes 
𝐾𝑤𝑎𝑙𝑘(𝑒, 𝑒′) 
 
 
 
 
 



Calculating a Kernel Matrix 

• Given a set of graphs {g1, g2,…,gn } 

 

• Calculate the kernel matrix Knxn 

– K(i,j) is the similarity between gi and gj 
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FCSP on Multi-Core CPU using OpenMP 

• OpenMP_In 

– Parallelize computation of a pair of graphs 

– Dynamic parallel for pragma 
• Vertex Kernel 

• Walk kernel 

• OpenMP_Out 

– Parallelize computation of the whole kernel matrix 

– Each OpenMP thread fetches a pair of graphs until all 
computation are finished 
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FCSP on GPU using OpenCL 

• Three OpenCL kernels 

– Vertex kernel 

– Walk kernel 

– Reduction kernel 

• Four implementations 

– GPU_1D 

– GPU_2D 

– GPU_1D_overlap 

– GPU_2D_overlap 25 



GPU_1D 

• 2D domain decomposition for Vertex Kernel 

• 1D domain decomposition for Walk Kernel 
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Input graphs 

GPU_1D 
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Input graphs 

Adjacency matrix 

GPU_1D 
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Input graphs 

Adjacency matrix 

Shortest Path Adjacency matrix 

GPU_1D 
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Input graphs 

Adjacency matrix 

Shortest Path Adjacency matrix 

Vertex Kernel 

GPU_1D 
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Input graphs 

Adjacency matrix 

Shortest Path Adjacency matrix 

Vertex Kernel 

Walk Kernel 

GPU_1D 



GPU_2D 

• 2D domain decomposition for Vertex Kernel 

• 2D domain decomposition for Walk Kernel 
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Input graphs 

Adjacency matrix 

Shortest Path Adjacency matrix 

Vertex Kernel 

Edge Kernel 

GPU_2D 



GPU_1D_overlap 

• 2D domain decomposition for Vertex Kernel 

• 1D domain decomposition for Walk Kernel 

• Computation and Communication overlap 

– Issue non-blocking memory transfer after Reduction Kernel 

– Assign next pair of graphs to non-blocking Vertex Kernel 
and Walk Kernel 

– CPU accumulates results from Reduction kernel meanwhile 
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GPU_2D_overlap 

• 2D domain decomposition for Vertex Kernel 

• 2D domain decomposition for Walk Kernel 

• Computation and Communication overlap 

– Issue non-blocking memory transfer after Reduction Kernel 

– Assign next pair of graphs to non-blocking Vertex Kernel 
and Walk Kernel 

– CPU accumulates results from Reduction kernel meanwhile 
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CPU and GPU Hybrid Implementation 

• Combine OpenMP_In and GPU_1D_overlap 

• Set a threshold T for number of shortest paths 

– Both input graphs smaller than T 

• OpenMP_In 

– Otherwise 

• GPU_1D_overlap 
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Execution Environment 

• CPU – Two Intel 5530 Quad core @ 2.4 GHz 
with 8MB cache (16 OpenMP threads) 

• GPU - One NVIDIA C2050 (448 Cores @ 
1.15GHz) with 3GB GDDR5 1.5 GHZ ECC RAM 
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Homogeneous Synthetic Datasets 

• Nine homogeneous datasets 

– 256 graphs per dataset 

– Each dataset contains graphs of same sizes 
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Homogeneous Datasets Statistics 
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Speedup of sequential FCSP over sequential 
SPGK on CPU 
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Speedup of Parallel FCSP over Sequential FCSP 
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Mixed Synthetic Dataset 

• 180 10-nodes graph 

• 76 50-nodes graphs 
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Different Implementation Running Time(seconds) on the Mixed Dataset 



Scientific Datasets 
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Speedup over OpenMP_In on Scientic Datasets 
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Conclusion and Future Work 

• We introduce Fast Computation of shortest Path 
graph kernel 

• Sequential FCSP is able to achieve 76x speedup over 
sequential SPGK 

• Two CPU parallelizations 

• Four GPU implementations 

• One Hybrid method 

• We are going to accelerate other graph kernels in the 
future 
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Thanks! 

Questions? 
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