

Parallelization of Shortest Path Graph Kernels on Multi-Core CPUs and GPU

Lifan Xu Wei Wang Marco A. Alvarez John Cavazos Dongping Zhang

Department of Computer and Information Science University of Delaware

Outline

- Introduction
 - Graph
 - Graph kernel
 - Shortest Path Graph Kernel (SPGK)
- Fast Computation of Shortest Path graph kernel (FCSP)
- Parallelization of FCSP on CPU and GPU
 - Two OpenMP implementations
 - Four GPU implementations
 - Hybrid method
- Experiments results
 - Synthetic datasets
 - Scientific datasets
- Conclusion and Future Work

Graph

- A graph G is a set of vertices V and edges E,
 where E ⊂ V²
- A graph G may have labels on vertices and/or edges
- The *adjacency matrix* **A** of G is defined as $[A_{ij}] = \begin{cases} 1 & if (v_i, v_j) \in E \\ 0 & otherwise \end{cases}$

Graph Kernel

- Kernels (from machine learning) between pairs of graphs (roughly speaking -> graph similarities)
- Examples:
 - Random Walk Kernel
 - Comparing walks
 - Shortest Path Kernel
 - Comparing shortest paths
 - Subtree Kernel
 - Comparing subtree-like patterns
 - Cyclic Pattern Kernel
 - Comparing simple cycles
 - Graphlet Kernel
 - Counting subgraphs of limited size

Shortest-Path Graph Kernel (SPGK)

- Convert graph to all pair shortest path graph
 - Can use Floyd-Warshall Algorithm

Floyd-Warshall

Original Graph

Shortest Path Graph

Floyd-Warshall

Original Graph

Shortest Path Graph

• Apply shortest path kernel

$$- K_{sp(G,G')} = \sum_{e \in E} \sum_{e' \in E'} K_{walk}(e,e')$$

• Apply shortest path kernel

$$- K_{sp(G,G')} = \sum_{e \in E} \sum_{e' \in E'} K_{walk}(e,e') - K_{walk}(e,e') = K_{node}(u,u') \cdot K_{edge}(e,e') \cdot K_{node}(v,v')$$

• Apply shortest path kernel

$$- K_{sp(G,G')} = \sum_{e \in E} \sum_{e' \in E'} K_{walk}(e,e')$$

- $K_{walk}(e, e') = K_{node}(u, u') \cdot K_{edge}(e, e') \cdot K_{node}(v, v')$
- K_{node} is a valid kernel function for comparing two vertices
- K_{edge} is a valid kernel function for comparing two edges

• Lines 2-4 loop through all paths in G1

1: $K \leftarrow 0$	
2: for $i, j = 0 \rightarrow n_node[g1]$ do	
3: $w1 \leftarrow sp_mat[g1][i][j]$	
4: if $i \neq j \ AND \ w1 \neq INF$ then	
5: for $m, n = 0 \rightarrow n_node[g2]$ do	
6: $w2 \leftarrow sp_mat[g2][m][n]$	
7: if $m \neq n \ AND \ w2 \neq INF$ then	
8: $k_edge \leftarrow EdgeKernel(w1, w2)$	
9: if $k_edge > 0$ then	
10: $k_node1 \leftarrow NodeKernel(g1, g2)$	(i,m)
11: $k_node2 \leftarrow NodeKernel(g1, g2)$	(j,n)
12: $K + = k_node1 * k_edge * k_node1$	e2
13: end if	
14: end if	
15: end for	
16: end if	
17: end for	
18: return K	

- Lines 2-4 loop through all paths in G1
- Lines 5-7 loop through all paths in G2

1:	$K \leftarrow 0$
2:	for $i, j = 0 \rightarrow n_node[g1]$ do
3:	$w1 \leftarrow sp_mat[g1][i][j]$
4:	if $i \neq j \ AND \ w1 \neq INF$ then
5:	for $m, n = 0 \rightarrow n_node[g2]$ do
6:	$w2 \leftarrow sp_mat[g2][m][n]$
7:	if $m \neq n \ AND \ w2 \neq INF$ then
8:	$k_edge \leftarrow EdgeKernel(w1, w2)$
9:	if $k_edge > 0$ then
10:	$k_node1 \leftarrow NodeKernel(g1, g2, i, m)$
11:	$k_node2 \leftarrow NodeKernel(g1, g2, j, n)$
12:	$K + = k_node1 * k_edge * k_node2$
13:	end if
14:	end if
15:	end for
16:	end if
17:	end for
18:	return K

- Lines 2-4 loop through all paths in G1
- Lines 5-7 loop through all paths in G2
- Line 8 calculates
 K_{edge}(e, e')

1:	$K \leftarrow 0$
2:	for $i, j = 0 \rightarrow n_node[g1]$ do
3:	$w1 \leftarrow sp_mat[g1][i][j]$
4:	if $i \neq j \ AND \ w1 \neq INF$ then
5:	for $m, n = 0 \rightarrow n_node[g2]$ do
6:	$w2 \leftarrow sp_mat[g2][m][n]$
7:	if $m \neq n \ AND \ w2 \neq INF$ then
8:	$k_edge \leftarrow EdgeKernel(w1, w2)$
9:	if $k_edge > 0$ then
10:	$k_node1 \leftarrow NodeKernel(g1, g2, i, m)$
11:	$k_node2 \leftarrow NodeKernel(g1, g2, j, n)$
12:	$K + = k_node1 * k_edge * k_node2$
13:	end if
14:	end if
15:	end for
16:	end if
17:	end for
18:	$\operatorname{return} K$

- Lines 2-4 loop through all paths in G1
- Lines 5-7 loop through all paths in G2
- Line 8 calculates $K_{edge}(e, e')$
- Lines 10-11 calculate $K_{node}(v, v')$

1:	$K \leftarrow 0$
2:	for $i, j = 0 \rightarrow n_node[g1]$ do
3:	$w1 \leftarrow sp_mat[g1][i][j]$
4:	if $i \neq j \ AND \ w1 \neq INF$ then
5:	for $m, n = 0 \rightarrow n_node[g2]$ do
6:	$w2 \leftarrow sp_mat[g2][m][n]$
7:	if $m \neq n \ AND \ w2 \neq INF$ then
8:	$k_edge \leftarrow EdgeKernel(w1, w2)$
9:	
10:	$k_node1 \leftarrow NodeKernel(g1, g2, i, m)$
11:	$k_node2 \leftarrow NodeKernel(g1, g2, j, n)$
12:	$K + = k_node1 * k_edge * k_node2$
13:	end if
14:	end if
15:	end for
16:	end if
17:	end for
18:	$\mathbf{return}\ K$

- Lines 2-4 loop through all paths in G1
- Lines 5-7 loop through all paths in G2
- Line 8 calculates $K_{edge}(e, e')$
- Lines 10-11 calculate $K_{node}(v, v')$
- Line 12 calculates
 K_{walk}(e, e')

1:	$K \leftarrow 0$
2:	for $i, j = 0 \rightarrow n_node[g1]$ do
3:	$w1 \leftarrow sp_mat[g1][i][j]$
4:	if $i \neq j \ AND \ w1 \neq INF$ then
5:	for $m, n = 0 \rightarrow n_node[g2]$ do
6:	$w2 \leftarrow sp_mat[g2][m][n]$
7:	if $m \neq n \ AND \ w2 \neq INF$ then
8:	$k_edge \leftarrow EdgeKernel(w1, w2)$
9:	if $k_edge > 0$ then
10:	$k_node1 \leftarrow NodeKernel(g1, g2, i, m)$
11:	$k_node2 \leftarrow NodeKernel(g1, g2, j, n)$
12:	$K + = k_node1 * k_edge * k_node2$
13:	end if
14:	end if
15:	end for
16:	end if
17:	end for
18:	$\operatorname{return} K$

Drawbacks of SPGK

- Four *for* loops and two *if* statements
- Redundant computation of $K_{node}(v, v')$
- Random memory access

Fast Computation of Shortest Path Graph Kernel (FCSP)

- Compute all $K_{node}(v, v')$ before $K_{walk}(e, e')$
- Convert shortest path adjacency matrix to coordinate lists (sparse matrix representation)
 - One array for value
 - One array for row
 - One array for column

• Lines 1-7 compute all $K_{node}(v, v')$

```
1: function VERTEX_KERNEL
 2:
        for i = 0 \rightarrow n\_node[q1] do
 3:
            for j = 0 \rightarrow n\_node[g2] do
                V[i][j] \leftarrow NodeKernel(g1, g2, i, j)
 4:
 5:
            end for
        end for
 6:
 7: end function
 8:
 9: function WALK_KERNEL
        K \leftarrow 0
10:
        for i = 0 \rightarrow n\_node[g1] do
11:
12:
            x1 \leftarrow edge_x1_g1[i]
            y1 \leftarrow edge_y1_q1[i]
13:
14:
            w1 \leftarrow edge_w1_q1[i]
            for j = 0 \rightarrow n\_node[q2] do
15:
16:
                 x2 \leftarrow edge_x2_q2[j]
                 y2 \leftarrow edge_y2_q2[j]
17:
18:
                w2 \leftarrow edge_w2_g2[j]
                 k\_edge \leftarrow EdgeKernel(w1, w2)
19:
20:
                 if k\_edge > 0 then
21:
                     k\_node1 \leftarrow V[x1][x2]
                     k\_node2 \leftarrow V[y1][y2]
22:
23:
                     K + = k\_node1 * k\_edge * k\_node2
                 end if
24:
25:
             end for
        end for
26:
27:
        return K
28: end function
```


- Lines 1-7 compute all $K_{node}(v, v')$
- Lines 11-14 loop all paths in G1

```
1: function VERTEX_KERNEL
 2:
        for i = 0 \rightarrow n\_node[q1] do
 3:
            for j = 0 \rightarrow n\_node[g2] do
                V[i][j] \leftarrow NodeKernel(g1, g2, i, j)
 4:
 5:
            end for
        end for
 6:
 7: end function
 8:
 9: function WALK_KERNEL
        K \leftarrow 0
10:
11:
        for i = 0 \rightarrow n\_node[q1] do
12:
            x1 \leftarrow edge_x1_g1[i]
            y1 \leftarrow edge_y1_q1[i]
13:
14:
            w1 \leftarrow edge_w1_q1[i]
            for j = 0 \rightarrow n\_node[q2] do
15:
16:
                 x2 \leftarrow edge_x2_q2[j]
                 y2 \leftarrow edge_y2_g2[j]
17:
18:
                w2 \leftarrow edge_w2_g2[j]
                 k\_edge \leftarrow EdgeKernel(w1, w2)
19:
20:
                 if k\_edge > 0 then
21:
                     k\_node1 \leftarrow V[x1][x2]
                     k\_node2 \leftarrow V[y1][y2]
22:
23:
                     K + = k\_node1 * k\_edge * k\_node2
                 end if
24:
25:
            end for
26:
        end for
27:
        return K
28: end function
```


- Lines 1-7 compute all $K_{node}(v, v')$
- Lines 11-14 loop all paths in G1
- Lines 15-18 loop all paths in G2

```
1: function VERTEX_KERNEL
 2:
        for i = 0 \rightarrow n\_node[q1] do
 3:
            for j = 0 \rightarrow n\_node[g2] do
                 V[i][j] \leftarrow NodeKernel(g1, g2, i, j)
 4:
 5:
            end for
        end for
 6:
 7: end function
 8:
 9: function WALK_KERNEL
        K \leftarrow 0
10:
11:
        for i = 0 \rightarrow n\_node[q1] do
            x1 \leftarrow edge_x1_g1[i]
12:
            y1 \leftarrow edge_y1_q1[i]
13:
14:
            w1 \leftarrow edge_w1_q1[i]
15:
            for j = 0 \rightarrow n\_node[q2] do
16:
                 x2 \leftarrow edge_x2_q2[j]
                 y2 \leftarrow edge_y2_g2[j]
17:
18:
                w2 \leftarrow edge_w2_g2[j]
                 k\_edge \leftarrow EdgeKernel(w1, w2)
19:
20:
                 if k\_edge > 0 then
21:
                     k\_node1 \leftarrow V[x1][x2]
                     k\_node2 \leftarrow V[y1][y2]
22:
                     K + = k\_node1 * k\_edge * k\_node2
23:
                 end if
24:
25:
            end for
26:
        end for
27:
        return K
28: end function
```


- Lines 1-7 compute all $K_{node}(v, v')$
- Lines 11-14 loop all paths in G1
- Lines 15-18 loop all paths in G2
- Line 19 computes
 K_{edge}(e, e')

```
1: function VERTEX_KERNEL
 2:
        for i = 0 \rightarrow n\_node[q1] do
            for j = 0 \rightarrow n\_node[g2] do
 3:
                 V[i][j] \leftarrow NodeKernel(g1, g2, i, j)
 4:
 5:
            end for
        end for
 6.
 7: end function
 8:
9: function WALK_KERNEL
        K \leftarrow 0
10:
11:
        for i = 0 \rightarrow n\_node[q1] do
            x1 \leftarrow edge_x1_g1[i]
12:
            y1 \leftarrow edge_y1_q1[i]
13:
14:
            w1 \leftarrow edge_w1_q1[i]
15:
            for j = 0 \rightarrow n\_node[q2] do
16:
                 x2 \leftarrow edge_x2_q2[j]
                 y2 \leftarrow edge_y2_g2[j]
17:
18:
                w2 \leftarrow edge_w2_g2[j]
                 k\_edge \leftarrow EdgeKernel(w1, w2)
19:
20:
                 if k\_edge > 0 then
21:
                     k\_node1 \leftarrow V[x1][x2]
                     k\_node2 \leftarrow V[y1][y2]
22:
                     K + = k\_node1 * k\_edge * k\_node2
23:
24:
                 end if
25:
            end for
26:
        end for
27:
        return K
28: end function
```


- Lines 1-7 compute all $K_{node}(v, v')$
- Lines 11-14 loop all paths in G1
- Lines 15-18 loop all paths in G2
- Line 19 computes
 K_{edge}(e, e')
- Lines 21-22 fetch $K_{node}(v, v')$

```
1: function VERTEX_KERNEL
 2:
        for i = 0 \rightarrow n\_node[q1] do
 3:
            for j = 0 \rightarrow n\_node[q2] do
                V[i][j] \leftarrow NodeKernel(g1, g2, i, j)
 4:
 5:
            end for
        end for
 6.
 7: end function
 8:
 9: function WALK_KERNEL
        K \leftarrow 0
10:
11:
        for i = 0 \rightarrow n\_node[q1] do
            x1 \leftarrow edge_x1_g1[i]
12:
            y1 \leftarrow edge_y1_q1[i]
13:
            w1 \leftarrow edge_w1_q1[i]
14:
15:
            for j = 0 \rightarrow n\_node[q2] do
16:
                 x2 \leftarrow edge_x2_q2[j]
                y2 \leftarrow edge_y2_g2[j]
17:
                w2 \leftarrow edge_w2_g2[j]
18:
                 k\_edge \leftarrow EdgeKernel(w1, w2)
19:
20:
                 if k\_edge > 0 then
21:
                     k\_node1 \leftarrow V[x1][x2]
                     k\_node2 \leftarrow V[y1][y2]
22:
                     K + = k\_node1 * k\_edge * k\_node2
23:
24:
                 end if
25:
            end for
26:
        end for
27:
        return K
28: end function
```


- Lines 1-7 compute all $K_{node}(v, v')$
- Lines 11-14 loop all paths in G1
- Lines 15-18 loop all paths in G2
- Line 19 computes
 K_{edge}(e, e')
- Lines 21-22 fetch $K_{node}(v, v')$
- Line 23 computes
 K_{walk}(e, e')

```
1: function VERTEX_KERNEL
 2:
        for i = 0 \rightarrow n\_node[q1] do
 3:
            for j = 0 \rightarrow n\_node[q2] do
                V[i][j] \leftarrow NodeKernel(g1, g2, i, j)
 4:
 5:
            end for
        end for
 6.
 7: end function
 8:
 9: function WALK_KERNEL
        K \leftarrow 0
10:
11:
        for i = 0 \rightarrow n\_node[q1] do
            x1 \leftarrow edge_x1_g1[i]
12:
            y1 \leftarrow edge_y1_q1[i]
13:
14:
            w1 \leftarrow edge_w1_q1[i]
            for j = 0 \rightarrow n\_node[q2] do
15:
16:
                 x2 \leftarrow edge_x2_q2[j]
                 y2 \leftarrow edge_y2_g2[j]
17:
                w2 \leftarrow edge_w2_g2[j]
18:
                 k\_edge \leftarrow EdgeKernel(w1, w2)
19:
                 if k\_edge > 0 then
20:
21:
                     k\_node1 \leftarrow V[x1][x2]
                     k\_node2 \leftarrow V[y1][y2]
22:
                     K + = k\_node1 * k\_edge * k\_node2
23:
24:
                 end if
25:
            end for
26:
        end for
27:
        return K
28: end function
```


Calculating a Kernel Matrix

- Given a set of graphs $\{g_1, g_2, \dots, g_n\}$
- Calculate the kernel matrix **K**_{nxn}
 - $K_{(i,j)}$ is the similarity between g_i and g_j

FCSP on Multi-Core CPU using OpenMP

- OpenMP_In
 - Parallelize computation of a pair of graphs
 - Dynamic parallel for pragma
 - Vertex Kernel
 - Walk kernel
- OpenMP_Out
 - Parallelize computation of the whole kernel matrix
 - Each OpenMP thread fetches a pair of graphs until all computation are finished

FCSP on GPU using OpenCL

- Three OpenCL kernels
 - Vertex kernel
 - Walk kernel
 - Reduction kernel
- Four implementations
 - GPU_1D
 - GPU_2D
 - GPU_1D_overlap
 - GPU_2D_overlap

GPU_1D

- 2D domain decomposition for Vertex Kernel
- 1D domain decomposition for Walk Kernel

GPU_1D

Input graphs

GPU_1D

Input graphs

	А	В	С		D	E	F	
Α	0	1	0	D	0	1	1	
В	0	0	1	E	0	0	0	
С	0	0	0	F	0	0	0	

Adjacency matrix

GPU_1D

Input graphs

	А	В	С		D	E	F
Α	0	1	0	D	0	1	1
В	0	0	1	E	0	0	0
С	0	0	0	F	0	0	0

Adjacency matrix

Shortest Path Adjacency matrix

А

В

UNIVERSITY of DELAWARE

GPU_1D

3 ₀ a d	ζ ₁ ΑΕ	≩ ₂ AF
≩ ₃ BD	≩ 4 ВЕ	, BF
3 ₆ ⊂ D	ζ ₇ сε	3,8 CF

Vertex Kernel

Input graphs

Ε)

(F

	Α	В	С		D	E	F
Α	0	1	0	D	0	1	1
В	0	0	1	E	0	0	0
С	0	0	0	F	0	0	0

Adjacency matrix

Shortest Path Adjacency matrix

GPU_1D

Shortest Path Adjacency matrix

¢c	AD	\$1	ΑE	≩ 2	A F
Şз	ВD	34	ΒE	≩ 5	ΒF
Şe	CD	≩7	CE	} 8	CF

Vertex Kernel

Walk Kernel

GPU_2D

- 2D domain decomposition for Vertex Kernel
- 2D domain decomposition for Walk Kernel

(A)

A B C

UNIVERSITY of DELAWARE

GPU_2D

(→ B)→ C))		Ē		F)			
		In	put	grap	hs					
A B C	A 0 0	B 1 0 0 Adj	C 0 1 0	D E F	D 0 0 0	E 1 0 0	F 1 0			
A B	A 0 0	B 1 0	C 2 1	E	D 0 0	E 1 0	F 1 0			
С	0	0	0	F	0	0	0			

Shortest Path Adjacency matrix

30 A D	ζ ₁ ΑΕ	≩ ₂ AF
≩ ₃ βD	≩ ₄ ве	≩ ₅ BF
3 ₆ ⊂ D	≩ ₇ ⊂ ε	, ⊂ F

Vertex Kernel

GPU_1D_overlap

- 2D domain decomposition for *Vertex Kernel*
- 1D domain decomposition for *Walk Kernel*
- Computation and Communication overlap
 - Issue non-blocking memory transfer after Reduction Kernel
 - Assign next pair of graphs to non-blocking Vertex Kernel and Walk Kernel
 - CPU accumulates results from Reduction kernel meanwhile

GPU_2D_overlap

- 2D domain decomposition for *Vertex Kernel*
- 2D domain decomposition for *Walk Kernel*
- Computation and Communication overlap
 - Issue non-blocking memory transfer after Reduction Kernel
 - Assign next pair of graphs to non-blocking Vertex Kernel and Walk Kernel
 - CPU accumulates results from Reduction kernel meanwhile

CPU and GPU Hybrid Implementation

- Combine OpenMP_In and GPU_1D_overlap
- Set a threshold T for number of shortest paths
 - Both input graphs smaller than T
 - OpenMP_In
 - Otherwise
 - GPU_1D_overlap

Execution Environment

- CPU Two Intel 5530 Quad core @ 2.4 GHz with 8MB cache (16 OpenMP threads)
- GPU One NVIDIA C2050 (448 Cores @ 1.15GHz) with 3GB GDDR5 1.5 GHZ ECC RAM

Homogeneous Synthetic Datasets

- Nine homogeneous datasets
 - 256 graphs per dataset
 - Each dataset contains graphs of same sizes

Homogeneous Datasets Statistics

Dataset Avg.	Nodes Avg.	Edges	Avg. SP
10-nodes	10	90	90
15-nodes	15	210	210
20-nodes	20	380	380
25-nodes	25	600	600
30-nodes	30	870	870
35-nodes	35	1190	1190
40-nodes	40	1560	1560
45-nodes	45	1980	1980
50-nodes	50	2450	2450

Speedup of sequential FCSP over sequential SPGK on CPU

Dataset	SPGK time(sec) F	TCSP time(sec)	Speedup
10-nodes	127.99	2.35	54.56
15-nodes	695.24	11.69	59.46
$20\text{-}\mathrm{nodes}$	2275.60	37.16	61.25
25-nodes	5668.74	91.42	62.00
30-nodes	11990.24	190.82	62.83
35-nodes	26220.74	355.50	73.76
40-nodes	45850.24	609.67	75.21
45-nodes	74817.26	983.35	76.08
50-nodes	115728.37	1513.69	76.45

Speedup of Parallel FCSP over Sequential FCSP

Mixed Synthetic Dataset

- 180 10-nodes graph
- 76 50-nodes graphs

 OpenMP_In OpenMP_Out GPU_1D GPU_2D GPU_1D_overlap GPU_2D_overlap Hybrid

 24.446
 20.349
 22.137
 32.252
 19.751
 29.336
 19.042

Different Implementation Running Time(seconds) on the Mixed Dataset

Scientific Datasets

Dataset	Num. of	f Graphs	Avg.	Nodes	Avg. Ed	lges	Min.	SP	Max. SP	Avg. SP
MUTAG		188		17		39		90	756	324
ENZYMES		600		32		124		2	15500	1215
NCI1		4110		29		64		6	11130	1005
NCI109		4127		29		64		12	11130	995

Speedup over OpenMP_In on Scientic Datasets

Dataset	$OpenMP_Out$	GPU_1D	GPU_2D	$GPU_1D_overlap$	$GPU_2D_overlap$	Hybrid
MUTAG	1.33	0.28	0.21	0.33	0.38	0.96
ENZYMES	1.05	1.73	0.78	1.89	0.94	1.92
NCI1	1.13	1.45	0.73	1.66	0.90	1.78
NCI109	1.11	1.38	0.69	1.58	0.87	1.70

Conclusion and Future Work

- We introduce Fast Computation of shortest Path graph kernel
- Sequential FCSP is able to achieve 76x speedup over sequential SPGK
- Two CPU parallelizations
- Four GPU implementations
- One Hybrid method
- We are going to accelerate other graph kernels in the future 45

Thanks! Questions?