
Parallelization of Shortest Path Graph Kernels
on Multi-Core CPUs and GPU

Lifan Xu Wei Wang

Marco A. Alvarez John Cavazos Dongping Zhang

Department of Computer and Information Science

University of Delaware

Outline

• Introduction

– Graph

– Graph kernel

– Shortest Path Graph Kernel (SPGK)

• Fast Computation of Shortest Path graph kernel (FCSP)

• Parallelization of FCSP on CPU and GPU

– Two OpenMP implementations

– Four GPU implementations

– Hybrid method

• Experiments results

– Synthetic datasets

– Scientific datasets

• Conclusion and Future Work

1

Graph

• A graph G is a set of vertices V and edges E,
where E ⊂ V2

• A graph G may have labels on vertices and/or
edges

• The adjacency matrix A of G is defined as

𝑨𝑖𝑗 =
1 𝑖𝑓 𝑣𝑖, 𝑣𝑗 ∈ 𝑬
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

2

Graph Kernel

• Kernels (from machine learning) between pairs of graphs (roughly speaking ->
graph similarities)

• Examples:

– Random Walk Kernel
• Comparing walks

– Shortest Path Kernel
• Comparing shortest paths

– Subtree Kernel
• Comparing subtree-like patterns

– Cyclic Pattern Kernel
• Comparing simple cycles

– Graphlet Kernel
• Counting subgraphs of limited size

3

Shortest-Path Graph Kernel (SPGK)

• Convert graph to all pair shortest path graph
– Can use Floyd-Warshall Algorithm

4

Floyd-Warshall

5
Original Graph Shortest Path Graph

Floyd-Warshall

6
Original Graph Shortest Path Graph

Shortest Path Graph Kernel

• Apply shortest path kernel
– 𝐾𝑠𝑝 𝐺, 𝐺′ = 𝐾𝑤𝑎𝑙𝑘(𝑒, 𝑒′)𝑒′∈𝐸′𝑒∈𝐸

7

Shortest Path Graph Kernel

• Apply shortest path kernel
– 𝐾𝑠𝑝 𝐺, 𝐺′ = 𝐾𝑤𝑎𝑙𝑘(𝑒, 𝑒′)𝑒′∈𝐸′𝑒∈𝐸

– 𝐾𝑤𝑎𝑙𝑘(𝑒, 𝑒′) = 𝐾𝑛𝑜𝑑𝑒(𝑢, 𝑢′) ∙ 𝐾𝑒𝑑𝑔𝑒(𝑒, 𝑒′) ∙ 𝐾𝑛𝑜𝑑𝑒(𝑣, 𝑣′)

8

Shortest Path Graph Kernel

• Apply shortest path kernel
– 𝐾𝑠𝑝 𝐺, 𝐺′ = 𝐾𝑤𝑎𝑙𝑘(𝑒, 𝑒′)𝑒′∈𝐸′𝑒∈𝐸

– 𝐾𝑤𝑎𝑙𝑘(𝑒, 𝑒′) = 𝐾𝑛𝑜𝑑𝑒(𝑢, 𝑢′) ∙ 𝐾𝑒𝑑𝑔𝑒(𝑒, 𝑒′) ∙ 𝐾𝑛𝑜𝑑𝑒(𝑣, 𝑣′)

– 𝐾𝑛𝑜𝑑𝑒 is a valid kernel function for comparing two vertices

– 𝐾𝑒𝑑𝑔𝑒 is a valid kernel function for comparing two edges

9

Shortest Path Graph Kernel

10

• Lines 2-4 loop through
all paths in G1

Shortest Path Graph Kernel

11

• Lines 2-4 loop through
all paths in G1

• Lines 5-7 loop through
all paths in G2

Shortest Path Graph Kernel

12

• Lines 2-4 loop through
all paths in G1

• Lines 5-7 loop through
all paths in G2

• Line 8 calculates
𝐾𝑒𝑑𝑔𝑒(𝑒, 𝑒′)

Shortest Path Graph Kernel

13

• Lines 2-4 loop through
all paths in G1

• Lines 5-7 loop through
all paths in G2

• Line 8 calculates
𝐾𝑒𝑑𝑔𝑒(𝑒, 𝑒′)

• Lines 10-11 calculate
𝐾𝑛𝑜𝑑𝑒(𝑣, 𝑣′)

Shortest Path Graph Kernel

14

• Lines 2-4 loop through
all paths in G1

• Lines 5-7 loop through
all paths in G2

• Line 8 calculates
𝐾𝑒𝑑𝑔𝑒(𝑒, 𝑒′)

• Lines 10-11 calculate
𝐾𝑛𝑜𝑑𝑒(𝑣, 𝑣′)

• Line 12 calculates
𝐾𝑤𝑎𝑙𝑘(𝑒, 𝑒′)

Drawbacks of SPGK

• Four for loops and two if statements

• Redundant computation of 𝐾𝑛𝑜𝑑𝑒(𝑣, 𝑣′)

• Random memory access

15

Fast Computation of Shortest Path Graph Kernel
(FCSP)

• Compute all 𝐾𝑛𝑜𝑑𝑒(𝑣, 𝑣′) before 𝐾𝑤𝑎𝑙𝑘(𝑒, 𝑒′)

• Convert shortest path adjacency matrix to
coordinate lists (sparse matrix representation)

– One array for value

– One array for row

– One array for column

16

17

• Lines 1-7 compute all
𝐾𝑛𝑜𝑑𝑒(𝑣, 𝑣′)

18

• Lines 1-7 compute all
𝐾𝑛𝑜𝑑𝑒(𝑣, 𝑣′)

• Lines 11-14 loop all
paths in G1

19

• Lines 1-7 compute all
𝐾𝑛𝑜𝑑𝑒(𝑣, 𝑣′)

• Lines 11-14 loop all
paths in G1

• Lines 15-18 loop all
paths in G2

20

• Lines 1-7 compute all
𝐾𝑛𝑜𝑑𝑒(𝑣, 𝑣′)

• Lines 11-14 loop all
paths in G1

• Lines 15-18 loop all
paths in G2

• Line 19 computes
𝐾𝑒𝑑𝑔𝑒(𝑒, 𝑒′)

21

• Lines 1-7 compute all
𝐾𝑛𝑜𝑑𝑒(𝑣, 𝑣′)

• Lines 11-14 loop all
paths in G1

• Lines 15-18 loop all
paths in G2

• Line 19 computes
𝐾𝑒𝑑𝑔𝑒(𝑒, 𝑒′)

• Lines 21-22 fetch
𝐾𝑛𝑜𝑑𝑒(𝑣, 𝑣′)

22

• Lines 1-7 compute all
𝐾𝑛𝑜𝑑𝑒(𝑣, 𝑣′)

• Lines 11-14 loop all
paths in G1

• Lines 15-18 loop all
paths in G2

• Line 19 computes
𝐾𝑒𝑑𝑔𝑒(𝑒, 𝑒′)

• Lines 21-22 fetch
𝐾𝑛𝑜𝑑𝑒(𝑣, 𝑣′)

• Line 23 computes
𝐾𝑤𝑎𝑙𝑘(𝑒, 𝑒′)

Calculating a Kernel Matrix

• Given a set of graphs {g1, g2,…,gn }

• Calculate the kernel matrix Knxn

– K(i,j) is the similarity between gi and gj

23

FCSP on Multi-Core CPU using OpenMP

• OpenMP_In

– Parallelize computation of a pair of graphs

– Dynamic parallel for pragma
• Vertex Kernel

• Walk kernel

• OpenMP_Out

– Parallelize computation of the whole kernel matrix

– Each OpenMP thread fetches a pair of graphs until all
computation are finished

24

FCSP on GPU using OpenCL

• Three OpenCL kernels

– Vertex kernel

– Walk kernel

– Reduction kernel

• Four implementations

– GPU_1D

– GPU_2D

– GPU_1D_overlap

– GPU_2D_overlap 25

GPU_1D

• 2D domain decomposition for Vertex Kernel

• 1D domain decomposition for Walk Kernel

26

27

Input graphs

GPU_1D

28

Input graphs

Adjacency matrix

GPU_1D

29

Input graphs

Adjacency matrix

Shortest Path Adjacency matrix

GPU_1D

30

Input graphs

Adjacency matrix

Shortest Path Adjacency matrix

Vertex Kernel

GPU_1D

31

Input graphs

Adjacency matrix

Shortest Path Adjacency matrix

Vertex Kernel

Walk Kernel

GPU_1D

GPU_2D

• 2D domain decomposition for Vertex Kernel

• 2D domain decomposition for Walk Kernel

32

33

Input graphs

Adjacency matrix

Shortest Path Adjacency matrix

Vertex Kernel

Edge Kernel

GPU_2D

GPU_1D_overlap

• 2D domain decomposition for Vertex Kernel

• 1D domain decomposition for Walk Kernel

• Computation and Communication overlap

– Issue non-blocking memory transfer after Reduction Kernel

– Assign next pair of graphs to non-blocking Vertex Kernel
and Walk Kernel

– CPU accumulates results from Reduction kernel meanwhile

34

GPU_2D_overlap

• 2D domain decomposition for Vertex Kernel

• 2D domain decomposition for Walk Kernel

• Computation and Communication overlap

– Issue non-blocking memory transfer after Reduction Kernel

– Assign next pair of graphs to non-blocking Vertex Kernel
and Walk Kernel

– CPU accumulates results from Reduction kernel meanwhile

35

CPU and GPU Hybrid Implementation

• Combine OpenMP_In and GPU_1D_overlap

• Set a threshold T for number of shortest paths

– Both input graphs smaller than T

• OpenMP_In

– Otherwise

• GPU_1D_overlap

36

Execution Environment

• CPU – Two Intel 5530 Quad core @ 2.4 GHz
with 8MB cache (16 OpenMP threads)

• GPU - One NVIDIA C2050 (448 Cores @
1.15GHz) with 3GB GDDR5 1.5 GHZ ECC RAM

37

Homogeneous Synthetic Datasets

• Nine homogeneous datasets

– 256 graphs per dataset

– Each dataset contains graphs of same sizes

38

Homogeneous Datasets Statistics

39

Speedup of sequential FCSP over sequential
SPGK on CPU

40

Speedup of Parallel FCSP over Sequential FCSP

41

Mixed Synthetic Dataset

• 180 10-nodes graph

• 76 50-nodes graphs

42

Different Implementation Running Time(seconds) on the Mixed Dataset

Scientific Datasets

43

Speedup over OpenMP_In on Scientic Datasets

44

Conclusion and Future Work

• We introduce Fast Computation of shortest Path
graph kernel

• Sequential FCSP is able to achieve 76x speedup over
sequential SPGK

• Two CPU parallelizations

• Four GPU implementations

• One Hybrid method

• We are going to accelerate other graph kernels in the
future

45

Thanks!

Questions?

46

