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Abstract—Malware classification for the Android ecosystem
can be performed using a range of techniques. One major
technique that has been gaining ground recently is dynamic
analysis based on system call invocations recorded during the
executions of Android applications. Dynamic analysis has tradi-
tionally been based on converting system calls into flat feature
vectors and feeding the vectors into machine learning algorithms
for classification.

In this paper, we implement three traditional feature-vector-
based representations for Android system calls. For each feature
vector representation, we also propose a novel graph-based
representation. We then use graph kernels to compute pair-wise
similarities and feed these similarity measures into a Support
Vector Machine (SVM) for classification. To speed up the graph
kernel computation, we compress the graphs using the Com-
pressed Row Storage format, and then we apply OpenMP to par-
allelize the computation. Experiments show that the graph-based
representations are able to improve the classification accuracy
over the corresponding feature-vector-based representations from
the same input. Finally we show that different representations can
be combined together to further improve classification accuracy.

I. INTRODUCTION

Android has increasingly grown in popularity and has
become the most popular smart phone platform with 295.2
million shipments and an 84.6% market share in the second
quarter of 2014 [18]. Unfortunately, the growing popularity of
Android smart phones and tablets has made this popular OS
a prime target for cybersecurity attacks. By the first quarter
of 2014, Android’s share of new global mobile malware had
risen to 99% [12], creating an urgent need for effective defense
mechanisms to protect Android enabled devices.

In recent years, several researchers have proposed defensive
strategies to counter the increasing amount and sophistica-
tion of Android malware. These methods can be categorized
into: static analysis, dynamic analysis, and a hybrid of both
techniques. Static analysis is based on extracting features by
inspecting application’s manifest and disassembled code [3].
By contrast, dynamic analysis methods monitor the application
behavior during its execution [10]. Hybrid methods typically
analyze the application before installation and also record
the execution behavior [25], [17], [29], [16]. Both sets of
information are then used together for detecting a malicious
application.

One key behavioral feature used in dynamic analysis of
malware is the system call invocations [26], [22], [5], [31],
[13], [7], [14], [28], [10]. In previous work on Android
malware analysis, the most common representation of the set
of system call invocations is to convert them into histograms.
However, other representations including signatures, n-grams,
and Markov Chains have been studied previously in Windows-
based malware analysis research [11], [2], [23], [6], [21].
Despite the differences between all these techniques, all these
methods have varying degrees of accuracies and false positive
rates, and each of the approaches has its drawbacks. The
histogram representation can capture the distribution of system
calls, but ignores the structural information. The signature
method inherently prevents the detection of unknown malware
of which no signatures exist. N-gram analysis is not only
unable to capture malware structural information, but also
introduces pressure on computational resources due to its large
feature space. A Markov Chain-based representation takes
advantage of the transition probabilities between system calls,
but it cannot record their order and structure. In this work, we
show that using of structure is important. Using structure we
are able to achieve up to 87.3% classification accuracy while
without using structure we only achieve 83.3%.

Most previous work that used histograms, signatures, n-
grams, and Markov Chains used a feature-vector-based repre-
sentation. In this paper, we first describe these representations
from previous work that we reimplemented for our study,
namely system call histograms, n-grams, and Markov Chains
for Android malware analysis. Then, we describe novel graph-
based representations, one for each of the three feature-vector-
based representation, we call the three new graph-based rep-
resentations we developed as follows: the Histogram System
Call Graph (HSCG), the N-gram System Call Graph (NSCG),
and the Markov Chain System Call Graph (MCSCG). In the
HSCG, processes executed with direct ancestral lineage to
the main process are recorded. The main process is the first
process created for the application, and thus the first node in
the graph. Each process is treated as a vertex and labeled
with a histogram of its system call invocations. The graph
is formed by connecting nodes representing parent/children
processes. The NSCG is similar to HSCG except the nodes in
the NSCG are labeled with n-gram vectors. Similarly, nodes
in the MCSCG are labeled with the Markov Chain vectors.

For this research, we first use strace, the Linux system call



utility to dynamically collect system call invocations from the
execution of an Android application. We run each application
in an Android emulator called Genymotion1. At the beginning
of emulation, we run each application for a certain amount
of time without interference. We then simulate a series of
interactive events, and all the system call invocations that
happened during the emulation are recorded. We present a set
of methods to convert the system call trace from execution
of a specific application into different feature-vector-based
and graph-based representations. After conversion, we use a
graph kernel to compute the pairwise graph similarities of
the Android applications for each graph representation. The
similarity measures are subsequently constructed and provided
as a kernel matrix to a Support Vector Machine (SVM) for
classification. Similarly, vector representations are also fed into
an SVM to construct the classification model.

For feature-vector-based representations, Gaussian kernel,
Linear kernel, and Intersect kernel algorithms are evaluated.
For graph-based representations, we use the Shortest Path
Graph Kernel (SPGK) algorithm on the HSCG, NSCG, and
MCSCG graphs. SPGK is suitable for similarity computations
of graphs with continuous labels (e.g., vectors). Since SPGK
is expensive because of its O(n4) running time, we apply two
techniques to speedup computation. First, we observe the ver-
tex label for the HSCG, NSCG, and MCSCG graphs are long
and sparse, so we compress these graphs and represent them
using the Compressed Row Storage (CRS) format. Second, we
utilize a multi-core CPU and parallelize the computation using
OpenMP.

We show the kernel matrices of different representations
can be combined together using multiple kernel learning
method to further improve the classification accuracy.

Our major contributions are summarized below:

• We perform a quantitative evaluation of different
feature-vector-based representations for Android mal-
ware analysis.

• We develop novel graph-based representations of sys-
tem calls to improve classification accuracies of tradi-
tional feature-vector-based representations.

• We compress the feature vector labels of the graph
representations and parallelize the graph kernel com-
putation.

• We perform a thorough evaluation on an expressive
dataset, demonstrating that graph representations offer
better classification accuracy than the corresponding
feature-vector-based ones.

• We show graph-based and feature-vector-based rep-
resentations can be combined to further improve the
performance.

II. ANDROID APPLICATION EMULATION

To capture runtime execution behavior of an application,
we record system call invocations during the execution of
the application using the Linux strace tool [1]. Our dynamic
analysis of Android applications is performed in an emulated

1http://www.genymotion.com

Android OS environment named Genymotion. It is well known
that malware tends to carry out critical tasks upon initial
execution. However, some malware may not execute malicious
code until after user interaction or until it is triggered by
particular events. Therefore, during our emulation, we first
start the application and keep it running for some time without
any interference. Then we perform a series of user interaction
events using the Monkey toolkit provided by the Android SDK.
We also perform other events including making phone calls,
sending SMS, and movements while the app is running.

A. Emulation Procedure

The process of dynamically analyzing Android APK files
is performed in a fully automated manner. Before analysis
begins, the system is initialized as follows: First, from a
Ubuntu 14.04 desktop, the Genymotion emulator is launched.
Second, a folder of APK files is created, which serves as
the sample repository to analyze. Third, a folder is created
as the output repository to store the analysis result files. Given
these initialization steps, a python script is executed to manage
the analysis procedure and issues all necessary commands to
the runtime environment. Communication between the python
script and the runtime environment is performed using the
Android Debug Bridge (ADB) tool. Given the initialization
described above, the following steps are performed by the
python script to load and launch an APK in the runtime
environment and collect the execution data:

1) Install application from input repository
2) Retrieve zygote process id (PID)
3) Run strace on zygote
4) Start an application and run for 20 seconds
5) Retrieve the application PID
6) Simulate user interactions using Monkey and run for

10 seconds
7) Simulate phone call events and run for 10 seconds
8) Simulate SMS message events and run for 10 seconds
9) Simulate phone movement events and run for 10

seconds
10) Simulate a second run of user interactions using

Monkey and run for 10 seconds
11) Stop strace, move log files to output repository

We iterate on Steps 1 through 11 until all samples in the
repository have been analyzed. Step 1 copies and installs the
APK file into the Android emulator. Step 2 applies the ps
command to retrieve the PID of the zygote process. Step 3
starts the strace command to record all system call invocations
of zygote and its descendant processes. The zygote process
is a standard process running in the Dalvik Virtual Machine
that is a component of the Android runtime environment.
Whenever an application is launched in Android, the associated
process of the application is created and assigned a PID by
zygote. By recording execution behavior of zygote, we are
able to record the runtime execution behaviors of all the
applications that are going to start later from the moment
of their creation by zygote. Step 3 assures that we collect
all relevant data of the application from its launching time
because we trace its parent process zygote. Step 4 launches the
application under analysis. The application is executed for 20
seconds without any interference. Step 5 issues a ps command
which provides a list of all currently running processes and



their PID. This list is saved to a file used for identifying
the PID of the application under analysis. Since the strace
records all processes with direct ancestral lineage to zygote,
there can be multiple processes that we can ignore during
analysis. By recording the list of PIDs we are able to retrieve
information only related to the application under analysis and
its descendant processes and threads. The package name for
the application under analysis is used to identify the running
process in the ps output. We conduct our analysis by using the
PID associated with the application’s package name in the ps
output. Steps 6-10 simulate different events. For Step 6 and 10,
we use Monkey to generate 200 random events including touch
events, motion events, trackball events, navigation events,
system key events, and activity launching events. We also set
the delay between events to 100 milliseconds. For Step 7,
we simulate four phone call events including incoming phone
calls, answering phone calls, making phone calls, and rejecting
phone calls. For Step 8, we simulate receiving and sending
SMS messages containing sensitive information like password
and bank account information. For Step 9, we simulate the
movement of a phone from one location to another. After
each interaction step, we keep the application running for 10
seconds without any interference. Step 11 stops the strace and
places the resulting files in the output repository. Two files are
retrieved, one containing the strace data and the other contains
the output of ps.

III. STRACE LOG CONVERSION

After we collect the strace data and the ps output for each
application, the package name, retrieved from each applica-
tion’s manifest file, along with the strace and ps files, are used
as input to a script that converts the strace files to multiple
representations. This strace conversion method has two parts.
The first extracts system call invocations only belonging to the
testing application since the strace log file contains system call
invocations of zygote and all its child processes. A system call
trace returned by the first part serves as input to the second
part, which converts the trace to feature-vector-based or graph-
based representations.

A. System Call Invocation Extraction

An important step in our strace conversion script is to
look up the package name in the ps output to identify the
PID of the application. With the strace data and PID of the
application under analysis, our script can extract only the
processes and system call invocations belonging to the testing
application. In the strace log file, each line records one system
call invoked by a particular PID. The lines can be parsed into
columns that record PID, invocation time, system call name,
parameters and return values respectively. Since the strace log
file contains not only system call invocations of the application
under analysis, but all processes with direct ancestral lineage
to zygote, we need to extract information only related to the
application of interest. To achieve this, our strace conversion
script first creates a process list containing only the PID of
the application. Then, it traverses the strace log file. If an
invocation is made by a process in the process list, then the
PID, name, and return value of this invocation are added as an
entry into the system call trace. If the name of this invocation
is fork or clone, it means a child process is spawned. On

success, both system calls return the PID of the child process.
On failure, −1 is returned. If the return value of fork or clone
is not −1, our conversion script adds the return value that is
the PID of the spawned child process into the process list,
then it continues traversing the strace log. Finally, a system
call trace serving as an input for the subsequent conversion
part is returned. For the purpose of demonstration, we create
one synthetic system call trace shown in Figure 1.

PID Name Ret_val

580 open 28

580 read 52

580 write 22

580 fork 581

581 fstat 0

581 mprotect 0

580 read 37

580 fork 582

582 write 27

580 close 0

Fig. 1: Example System Call Trace.

B. System Call List

From the full dataset of system call traces, we collect a
system call list containing 213 unique system calls referred
to as the full system call list. Since the length of the system
call list plays a key role in most representations in terms of
computation time, we want to keep the list as short as possible
while maintaining the same classification accuracy. To find
out the appropriate list, we compute the average number of
invocations per application for each system call and sort them.
The sorting is done separately for benign traces and malicious
traces. We extract the top K system calls from both traces
and merge them to get the reduced system call list. We then
perform experiments by setting K to be 5, 10, 20, and 213.
Results show that using the top 20 system calls is not as
accurate as using the full system call list, but it is able to reach
a very close classification accuracy with significantly reduced
computation time. Detailed results are in Section VI-F and the
top 20 system calls for benign and malicious applications are
shown in Figure 2.

C. Feature-vector-based Representations

We first convert the system call traces to three previously
studied feature-vector-based representations used in Android
and Windows malware analysis.

1) System Call Histogram: The first previously studied rep-
resentation of system call usage in Android malware analysis
we look at is histograms. To convert a system call trace into
a histogram, our strace conversion script takes the system call
trace and a system call list as input. Then it parses each line of
the trace in order, finds the index of each system call name, and
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Fig. 2: Top 20 system calls per application on average.

increments the corresponding element of the histogram by one.
For demonstration purposes, we show the resulting histogram
in Figure 3(a) converted from the system call trace listed in
Figure 1. In our experiments, we feed our script both the full
system call list and the top 20 system call list, and the resulting
histograms are named histogram-full and histogram-top20,
respectively.

2) N-gram: Another previously studied representation in
malware analysis is an n-gram [28]. An n-gram is a contiguous
sequence of n system calls from the system call trace. There
are two parameters associated with n-gram: n as the number of
system call invocations in the sequence and L as the number
of unique system calls which is also the size of the system
call list. Given n and L, there can be Ln different n-grams.
Therefore, the dimension of the resulting n-gram feature vector
grows exponentially as we increase the value of n. In our
experiments, we merge the top 20 system calls from benign
and malicious applications, which gives us a value of L = 23.
This is a significant reduction from 213, which is the original
number of unique system calls. For n, we test 2-grams, 3-
grams, and 4-grams. Figure 3(b) shows the 2-gram histogram
converted from the given system call trace in Figure 1.

3) Markov Chain: Another representation of system calls
that has been studied, in particular, in Windows malware
analysis research, is Markov Chain [2]. It can be viewed as

a directed graph where the vertices are the system calls and
the edges are the transition probabilities calculated by the data
contained in the trace. For a Markov Chain graph, G = 〈V,E〉,
it consists of two sets, the vertex set V and the edge set E. V
corresponds to the system calls, while E, corresponds to the
transition probability from one system call to another. Given n
system calls in the system call list, an adjacency matrix An×n
can be used to represent the Markov Chain graph. For each
element Ai,j in the matrix, it presents the transition probability
from system call i to system call j. The adjacency matrix
can be treated as a 1D feature vector and fed into a machine
learning model for classification. Fig. 3(c) shows the resulting
Markov Chain converted from the given trace of system calls in
Figure 1. In our experiments, we generate the Markov Chains
using the top 20 system calls and the full system call list, which
we have named MarkovChain-top20 and MarkovChain-
full, respectively.

D. Graph-based Representations

To improve the classification accuracy when using the
feature-vector-based representations, we propose a graph-based
representation that augments each traditional feature vector
representation. In these graphs, each vertex represents a pro-
cess of the Android application and each vertex is labeled with
a feature vector.

1) Histogram System Call Graph: First, we construct the
Histogram System Call Graph (HSCG) as an alternative to
a simple system call histogram representation. To generate
an HSCG, our conversion script reads the trace line by line
and parses each one to the triple of PID, system call name,
and return value. If the process corresponding to the PID of
this record is not yet a vertex of the graph, it is added as a
vertex to the graph. If this is a fork or clone system call, the
return value, which is the PID of the spawned child process,
is also added as a vertex into the graph, and an edge from
parent to child is also added. In an HSCG graph, each vertex
is associated with a system call histogram generated from the
system calls performed by the corresponding process. Fig. 4(a)
shows the resulting Histogram System Call Graph converted
from the given system call trace in Figure 1.

2) N-gram System Call Graph: We also create an N-gram
System Call Graph (NSCG) as a graph-based alternative to
the previously studied n-gram histogram. An NSCG shares
the graph structure with an HSCG. The only difference is that
the vertices in NSCG are labeled with an n-gram histogram for
the corresponding process instead of the system call histogram.
In our experiments, we created 2-gram, 3-gram, and 4-gram
graphs for the corresponding n-gram histogram using the top
20 system call list which sets the L to be 23. Dimensions of
vertex labels in these graphs are therefore 232, 233, and 234

respectively. Fig. 4(b) shows the resulting 2-gram System Call
Graph converted from the system call trace.

3) Markov Chain System Call Graph: Similarly, we cre-
ate the Markov Chain System Call Graph (MCSCG) as an
alternative to the traditional Markov Chain representation.
MCSCG shares the same graph structure with HSCG and
NSCG. However, the vertices in MCSCG are labeled with
a Markov Chain, instead of a histogram or an n-gram. In
our experiments, we create MCSCG for both MarkovChain-
top20 and MarkovChain-full. Dimensions of vertex labels
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IV. GRAPH SIMILARITY COMPUTATION

After converting the system call traces into graphs, we use
graph kernels to calculate the similarities between each pair
of graphs. One existing graph kernel is applied for graphs
with feature vector labels, e.g. HSCG, NSCG, and MCSCG.
It is named Shortest Path Graph Kernel (SPGK) [4]. Since the
labels in HSCG, NSCG, and MCSCG can be sparse, we adapt
the Compressed Row Storage (CRS) format to compress these
graphs and parallelize the computation by utilizing a multi-
core CPU with OpenMP.

A. Shortest Path Graph Kernel Algorithm

For the SPGK algorithm, an input graph is converted to all
pair shortest path graph using Floyd-Washall algorithm first.
Given a graph G = 〈V,E〉 comprising a set V of vertices
together with a set E of edges, a shortest path graph is a
graph S = 〈V ′, E′〉, where V ′ = V and E′ = {e′1, . . . , e′m}
such that e′i = (ui, vi) if the corresponding vertices ui and vi
are connected by a path in G. The edges in the shortest path
graph are labeled with the shortest distance between the two
nodes in the original graph.

The SPGK algorithm for two shortest path graphs S1 =
〈V1, E1〉 and S2 = 〈V2, E2〉 is computed as:

KSPGK(S1, S2) =
∑

e1∈E1

∑
e2∈E2

kwalk(e1, e2) (1)

where kwalk is a kernel for comparing two edge walks. The
edge walk kernel kwalk is the product of kernels on the vertices
and edges along the walk. It can be calculated based on the
starting vertex, the ending vertex, and the edge connecting
both. Let e1 be the edge connecting nodes u1 and v1 of graph
S1, and e2 be the edge connecting nodes u2 and v2 of graph
S2. The edge walk kernel is defined as follows:

kwalk(e1, e2) = knode(u1, u2) · kedge(e1, e2) · knode(v1, v2)
(2)

where knode and kedge are kernel functions for comparing
vertices and edges respectively. The same notations are also
applied in the following sections.

In our experiments, we pick the Brownian Bridge kernel
(Eq. 3) as used in Borgwardt et al. [4] with a c value of 2
for kedge. For knode, given that the dimension of the feature
vectors is n, we evaluated three popular kernels including the
Gaussian kernel, the Intersect kernel and the Linear kernel.

kbrownian(e1, e2) = max(0, c− |e1 − e2|) (3)

B. Computation Speedup

Two techniques are applied in our experiments to speedup
the graph similarity computation. First, we observe the labels
in HSCG, NSCG, and MCSCG are usually sparse, therefore
we compress these graphs using the Compressed Row Storage
(CRS) format. By adapting the CRS format, we are able to
significantly reduce the average dimension of vertex labels
by eliminating all zero elements. Consequently, the compu-
tation time of SPGK is greatly decreased. To further speedup
the computation, we adapt the method proposed by Xu, et
al., [30] and parallelize SPGK by utilizing a multi-core CPU

with OpenMP. Since we have multiple input graphs and the
computation between different pairs of graphs is independent,
we can parallelize SPGK naturally by assigning each CPU core
a different pair of graphs at a time.

V. CLASSIFICATION

To automatically classify Android applications into benign
or malicious applications, we calculate similarities between
feature vectors and similarities between graphs depending on
the representation we are using. The similarity measures are
constructed as a kernel matrix and fed into the Support Vector
Machine (SVM) for classification. We choose the SVM algo-
rithm due to its accuracy as a supervised approach for binary
classification. Additionally, SVMs can perform classification
based on a precomputed kernel matrix constructed using graph
kernels or Multiple Kernel Learning (MKL).

A. Support Vector Machine

SVMs consist of two phases: training and testing. Given
positive and negative samples in the training phase, an SVM
finds a hyperplane which is specified by the normal vector
w and perpendicular distance b to the origin that separates
the two classes with the largest margin γ [9]. Figure 5 shows
a schematic depiction of an SVM. During the testing phase,
the samples are classified by the SVM prediction model and
assigned either a positive or negative label. The decision
function f of the linear SVM is given by

f(x) = 〈w, x〉+ b (4)

where x is a feature vector representing the sample. It is
classified as positive if f(x) > 0 and negative otherwise. In
the training phase, 〈w, b〉 are computed as the SVM prediction
model from the training data. In the testing phase, the samples
are classified using Eq. 4 with w and b from the prediction
model. To use a kernel matrix as input, the decision function
can be transformed to Eq. 5. In this equation, yi is the
class label of training data, w∗ and αi are parameters of the
prediction model computed from the training data. K(Ri, R)
is the kernel value between a testing representation R and a
training representation Ri [24]. Once we fill the kernel values
with the kernel matrix, we can classify the testing applications.

f(R) = (w∗ +

N∑
i=0

αiyiK(Ri, R)) (5)

For HSCG, NSCG, and MCSCG, we use SPGK-
Gaussian, SPGK-Intersect, and SPGK-Linear to com-
pute the kernel matrix. To make it consistent with the graph-
based representations, we also use Gaussian, Intersect, and
Linear kernels to construct the kernel matrices for all the
feature-vector-based representations. These kernel matrices are
then fed into SVM for classification using Eq. 5. In our
experiments, we observe that the Intersect kernel achieves
the best classification accuracy, therefore, we only report the
results from the Intersect kernel.
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B. Multiple Kernel Learning

One simple way to combine learning results from different
features is to concatenate different feature vectors to create a
large vector and use it for classification. However, this simple
method assigns the same weight to different features which
may lead to suboptimal learning results compared to training
on individual features because some features may play more
important roles in the learning than other features. Therefore,
we need to assign different weights to different features based
on their significance during learning. Such optimal weights can
be calculated by the MKL algorithm.

MKL is an SVM-based method for use with multiple
kernels. An SVM takes one kernel matrix as input to build a
classifier. However, when it comes to learning, it makes more
sense to extract different features from all available sources,
learn these features separately and then combine the learning
results. MKL does this by taking kernel matrices constructed
from different features and different kernels, and is able to
find an optimal kernel combination to build the classifier. In
addition to the SVM αi and bias term w∗, MKL learns one
more parameter which is the kernel weights βj in training.
Eq. 6 shows the resulting kernel method from MKL.

f(R) = (w∗ +

N∑
i=0

αi

M∑
j=0

βjyiKj(Ri, R)) (6)

In our experiments, we use the state-of-the-art Generalized
MKL with Spectral Projected Gradient decent optimization
(SPG-GMKL) [15] to perform MKL.

VI. EXPERIMENTAL RESULTS

In our experiments, we train our SVM on a classification
problem with two classes, malicious or benign. For each
representation, we construct a kernel matrix. These kernel
matrices are then fed into an SVM algorithm using ten-fold
cross validation. We also evaluate 15 different values for the
regularization parameter C in the SVM, varying from 2−2 to
212 with a step value of 2. The experiments are repeated five

times with different cross validation partitions and the average
classification accuracy rates are reported.

The experiments are performed on a workstation with 128
GB memory, an AMD Opteron 6386 CPU with 32 Piledriver
cores clocked at 3.2 GHz, an AMD Radeon HD 7970 GPU
with 32 compute units and 3 GB global memory, and a 2 TB
hard drive.

A. Dataset

We collected 5888 applications from Google Play and
VirusShare2. To classify the binaries as malicious and benign
applications, we submit our samples to the VirusTotal3 web
service and inspect the output of 51 commercial Anti-Virus
(AV) scanners. We label all applications as malicious that are
detected by at least two of the scanners. The other applications
are labeled as benign. We end up with 1886 malicious appli-
cations and 4002 benign applications. The malicious samples
were mostly discovered in 2014, and they are categorized into
39 families by the commercial AV scanner, AVG4.

We recorded the runtime execution behaviors of the An-
droid applications and then converted them to different repre-
sentations using our strace conversion scripts. Table I shows
statistics, including number of vertices, edges, and shortest
paths for the graphs generated from our malicious and benign
samples. Since HSCG, NSCG, and MCSCG graphs have
exactly the same graph structures, we only show numbers for
HSCG in the table. On the statistics table, the graphs generated
from malware are slightly larger than the graphs that came
from benign samples on average. We hypothesize that this is
the case because malware tends to spawn additional processes
to perform malicious behaviors.

B. Evaluation Metrics

In our experiments, we train our SVM on a classification
problem with two classes, malicious or benign. A confusion
matrix is used in our method to evaluate the effectiveness of
different kernels. From the confusion matrix, we can calculate
FalsePositiveRate(FPR) and Accuracy.

We let True Positive (TP ) be the number of Android
malware that are correctly detected, True Negative (TN) be
the number of benign applications that are correctly classified,
False Negative (FN) be the number of malware that are
predicted as benign application, and False Positive (FP )
be the number of benign applications that are classified as
malware. Then our evaluation metrics are defined as follows:

FPR =
FP

FP + TN
(7)

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

2http://virusshare.com
3https://www.virustotal.com/
4http://free.avg.com/us-en/homepage



TABLE I: Detailed Statistics of Vertices, Edges, Heights, and Shortest Paths for different graph representations of Malicious (M)
and Benign (B) applications. HSCG, NSCG, and MCSCG graphs have the same statistics

Vertices Edges Shortest Paths Heights
Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

HSCG (M) 7 114 29 6 113 28 6 229 42 2 17 4
HSCG (B) 7 109 24 6 108 23 6 411 33 2 18 3

C. Different Kernels

For the SPGK algorithm, we need to pick a valid kernel
function knode for comparing vertices and another valid kernel
function kedge for comparing edges. In our experiments, we
pick a Brownian Bridge kernel for kedge as used in Borgwardt
et al. [4] with a c value of 2 for kedge. For knode, we evaluate
Gaussian kernels with different σ values from 2−6 to 29 with
a step value of 23. We also evaluate knode using the Intersect
kernel and the Linear kernel. However, we report only the
best classification results although they may be achieved by
different kernels in different graph sets.

Similarly, we apply different Gaussian kernels, an Intersect
kernel, and a Linear Kernel on feature-vector-based represen-
tations. Only the best classification accuracies are reported.

D. Results from Interaction Steps

To understand the importance of interaction events, we
first emulate each application for 20 seconds without any
interference and then apply various interaction events. All
system call invocations are recorded in one strace log file. We
generate HSCG graphs using only the first 20 seconds of the
strace log files and refer to these as HSCG-nointeraction.
We also generate HSCG graphs using the whole strace log
files and refer to these as HSCG-interaction. By applying
graph kernels on these two graph sets, the SVM results show
HSCG-nointeraction can reach 80.2% classification accu-
racy while HSCG-interaction reaches 85.3%. This 5.1%
improvement reveals that by applying different interaction
events, we are able to expose more malicious behaviors.

E. Results from Incomplete Strace

In our experiments, we run strace on zygote so we can
record all system call invocations of the testing application
from the moment it is launched. This is an important step
because malware tends to carry out malicious tasks upon
initial execution. If we only record the execution behavior
after the application has been launched, for example, like
the method proposed by Wei et al. [28], important malicious
behavior may not be recorded. To understand the importance
of complete strace log, we ignore all system call invocations
that happen during the first second of the strace log files and
generate HSCG graphs named HSCG-incomplete. We then
compare its performance with HSCG-interaction. Experi-
ments show HSCG-incomplete reaches 84.5% classification
accuracy which is 0.8% less than HSCG-interaction. There-
fore, recording system call invocations during initial execution
can help reveal more malicious behaviors. The experiments in
the rest of the paper are all based on full strace log files.

F. Results from Top K System Call List

As mentioned in Section III-B, we extract the top K system
calls to reduce the computation time. We generate HSCG
graphs from strace log files using the top 5, top 10, and
top 20 most frequent system calls. Then, we compare the
classification results using these graphs to using the HSCG
graphs generated using the full system call list.

Table II shows the accuracy achieved by using different
system call lists and the corresponding graph kernel computa-
tion time on our experimental machine. It shows that using the
top 20 system calls cannot reach the same accuracy as using
the full system call list. Nevertheless, using the top 20 system
calls is able to reach an accuracy level of about 1% better than
using top 15 system calls, 2% better than using top 10 system
calls, and 3.3% better than using top 5 system calls. In terms
of computational cost, using only the most frequent 20 system
calls is 1.8x faster than using the full list. Therefore, we use
only the top 20 system call list for most of our experiments,
unless otherwise noted. For some representations that are not
computationally expensive, we experiment with both the full
system call list and the top 20 system call list.

TABLE II: Best Classification Accuracy and Graph Kernel
Computation Time for HSCG Graphs Generated using Dif-
ferent System Call Lists

graph Accuracy Time (sec)
HSCG-full 85.3% 68

HSCG-top20 83.3% 38
HSCG-top15 82.3% 30
HSCG-top10 81.3% 23

HSCG-top5 80.0% 17

G. Results from Feature Vector Representation

Here, we evaluate previously studied feature-vector-based
representations including histogram, n-gram, and the Markov
Chain. We build system call histograms with top 20 system
calls and the full system call list. We name them histogram-
top20 and histogram-full, respectively. For n-grams, we
use the top 20 system call list and evaluate different N
values, where N is 2, 3, and 4. The resulting vector sets
are named 2-gram-histogram, 3-gram-histogram, and 4-
gram-histogram. To build our Markov Chains, we use the top
20 system calls and the full list. The resulting feature vectors
are named MarkovChain-top20 and MarkovChain-full,
respectively. These feature vectors are fed into different kernels
for constructing the kernel matrices. Then, the matrices are
fed into an SVM for five runs of ten-fold cross validation.
We report the best classification accuracy that each repre-
sentation can achieve and the corresponding False Positive
Rate (FPR) in Table III. The results show that an n-gram



representation performs better for larger values of n. This is
reasonable because larger values of n means more system
call combinations are taken into consideration. Please note
that histogram-top20 is essentially 1-gram-histogram in
our experiment. We also observe that using a full system call
list can achieve better classification accuracy for histogram and
Markov Chain compared to using top 20 system calls for these
representations. However, the FPR rates are also increased
using the full system call list.

TABLE III: Best Classification Accuracy Achieved by Differ-
ent Feature-vector-based Representations

Vector set Accuracy FPR
histogram-top20 74.5% 8.2%

histogram-full 80.5% 9.1%
MarkovChain-top20 81.3% 8.4%

MarkovChain-full 82.6% 9.2%
2-gram-histogram 80.9% 8.1%
3-gram-histogram 82.8% 8.0%
4-gram-histogram 83.3% 8.0%

H. Results from Graph Representations

For each feature vector representation, we generate its
corresponding graph representation. HSCG is the graph rep-
resentation for the system call histogram. In particular, we
generate HSCG using the top 20 system call list and the full
list. We call these graph representations HSCG-top20 and
HSCG-full, respectively. The N-gram System Call Graph
(NSCG) is the graph representation for n-grams. We generate
NSCG graphs for 2-gram-histograms, 3-gram-histograms,
and 4-gram-histograms using the top 20 system call list.
We call these graph representations NSCG-2, NSCG-3,
and NSCG-4, respectively. For Markov Chains, we build a
Markov Chain System Call Graph (MCSCG) and experiment
with MCSCG-top20 and MCSCG-full using the top 20
and the full system call list, respectively. The kernel matrices
for these graph representations are fed to an SVM algorithm
for five runs of ten-fold cross validation. We also evaluated
15 different values for the regularization parameter C in our
SVM algorithm. Figure 6 shows the classification accuracy
for these different graph representations for different values
of C. From the figure, we observe that HSCG-top20 per-
forms the worst and HSCG-full is slightly better. NSCG-
2 is not as effective as MCSCG-top20 because MCSCG
has encoded transitional probability information. MCSCG-
full outperforms MCSCG-top20 due to the utilization of
a full system call list. Although, MCSCG-full is inferior
to NSCG-3. Overall, NSCG-4 reaches the best accuracy at
87.3%.

We directly compare the classification accuracy between
feature-vector-based representations and their corresponding
graph-based representations in Table IV. On average, a graph-
based representation is able to reach 5.2% classification ac-
curacy improvement over the corresponding feature-vector-
based representation. Thus, we can conclude graph-based
representation performs better than flat feature vectors using
the same strace information. This shows that the structure
of the calls represented in the graph-based techniques adds
predictive power to the model.
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Fig. 6: Classification Accuracy with Different C values for
HSCG, NSCG, and MCSCG

TABLE IV: Classification Accuracy Comparison between
Feature-vector-based Representation and its corresponding
Graph-based Representation

Vector Graph Improvement
histogram-top20 74.5% 83.3% 8.8%

histogram-full 80.5% 85.3% 4.8%
MarkovChain-top20 81.3% 85.9% 4.6%

MarkovChain-full 82.6% 87.2% 4.6%
2-gram-histogram 80.9% 85.9% 5.0%
3-gram-histogram 82.8% 87.1% 4.3%
4-gram-histogram 83.3% 87.3% 4.0%

Average 5.2%

I. Results from Multiple Kernel Learning

To demonstrate different representations can be used to-
gether and further improve classification accuracy, we ap-
ply the MKL method to combine different similarity ker-
nel matrices and feed the resulting matrix into an SVM.
In particular, we evaluate the linear combinations of kernel
matrices obtained from MarkovChain-full, MCSCG-full,
histogram-full, 2-gram-histogram, 3-gram-histogram,
4-gram-histogram, HSCG-full, NSCG-2, NSCG-3, and
NSCG-4 using SPG-GMKL. The weights obtained from
SPG-GMKL for each kernel matrix are listed in Table V.
By linearly combining these kernel matrices, we are able to
reach a classification accuracy of 87.7% with a FPR of 3.8%.
Therefore, feature-vector-based representation and graph-based
representation can be combined together to achieve better
accuracy.

J. Graph Kernel Running Time

For n input graphs, each graph kernel returns a kernel
matrix of size n×n. The kernel matrix is symmetric, therefore
we only compute its diagonal and the top half corresponding
to (n2 + n)/2 entries. In our dataset, we have 5888 samples
in total. Therefore, we generate 5888 system call traces, one
trace for each application execution and then convert these



TABLE V: Multiple Kernel Learning Weights and Classification Result. MC stands for MarkovChain, hist. stands for histogram.

MC MCSCG hist. 2-hist. 3-hist. 4-hist. HSCG NSCG-2 NSCG-3 NSCG-4 Accuracy FPR
Weight 0.34 0.60 0.12 0.14 0.22 0.30 0.25 0.32 0.47 0.59 87.7% 3.8%

into 5888 graphs for each graph representation and feed the
graphs into the corresponding graph kernels. Consequently,
each graph kernel needs to compute the similarity between
(58882 + 5888)/2 pairs of graphs given n is 5888.

To speedup the computation, we compress the graphs
and parallelize the graph kernels using OpenMP. In our
experiments, we use one CPU thread for the initialization
which consists of reading input graphs into CRS format and
converting each graph to its shortest path graph, and then we
create 32 threads for graph kernel computation.

Table VI shows the kernel matrix computation time for
HSCG, NSCG, MCSCG, and 4-gram-histogram. SPGK-
Intersect is applied on HSCG, NSCG, and MCSCG while
Intersect is applied on the 4-gram-histogram. The second
row in the table shows the dimensions of vertex labels for
different graph representations and feature vector length for 4-
gram-histogram. The third row shows the average vertex label
dimensions for CRS format. The last row shows the compu-
tation time spent on kernel matrix construction for SPGK-
Intersect and Intersect. By adapting the CRS format, we can
dramatically reduce the dimensions of vertex labels as shown
in the table. It also shows that the computation time of SPGK-
Intersect algorithm increases as the vertex label dimension
increases. Overall, the overhead constructing a kernel matrix
for the whole training set is reasonable. On top of that, once the
training is done, the time spent on computing graph similarities
versus the training graphs for one testing graph should be much
faster.

VII. LIMITATIONS

In this paper, we focus on analyzing different represen-
tations of system call invocations. However, there are a few
limitations of the dynamic analysis technique.

First, there are some advanced malware that employ anti-
analysis techniques to evade dynamic analysis in emulated
Android environments [19]. Once an emulator is detected, the
malicious code does not get triggered.

Second, we observe that some of Android applications
cannot be straced. After analyzing the failed samples, we dis-
covered that some of these applications could not be installed
due to one of several reasons, such as one or more missing
shared libraries, no certificates present, a malformed manifest,
a failed dexopt, or an invalid APK.

Third, the best classification accuracy we were able achieve
on our dataset using dynamic analysis is 87.7%. However,
the state-of-the-art static method is able to achieve a better
performance on a larger dataset. For example, DREBIN [3]
reaches a detection rate of 94% on their dataset consisting
of 123,453 benign applications and 5,560 malware samples.
The emulation overhead of dynamic analysis prevents us from
running experiments on tens of thousands of applications

in a short time. Nevertheless, static analysis techniques can
be defeated by malware packing and other malware obfus-
cation techniques [20]. Ideally, dynamic analysis and static
analysis should be complementary to each other. By using
them together, we can ensure improved malware analysis and
detection.

In conclusion, dynamic analysis has its drawbacks. How-
ever, the purpose of this paper is to evaluate different repre-
sentations and improve the classification accuracy for dynamic
analysis. We feed different interaction events into dynamic
analysis and evaluate the performance of traditional feature-
vector-based representations converted from system call invo-
cations. We then propose different novel graph-based represen-
tations and combine them with traditional feature-vector-based
representations to further improve the classification accuracy
of dynamic analysis.

VIII. RELATED WORK

Android malware can be analyzed using two different and
complementary methods: static and dynamic analysis. Static
methods mainly focus on extracting features from the manifest
and dex files of the application package. DREBIN [3] and
DroidSIFT [32] are good examples of current static analy-
sis methods. Dynamic methods concentrate on scrutinizing
behavior of malware during its execution in an emulation
environment. CrowDriod [5] and CopperDroid [22] are exam-
ples of dynamic analysis. A few hybrid methods combining
the advantages of static and dynamic analysis have also been
proposed. Andrubis [17], [29], [16] and Mobile-Sandbox [25]
are good examples of hybrid analysis method.

To the best of our knowledge, there is no existing work that
systematically analyzing different representations of system
call invocations for Android malware. There is also no prior
work comparing the feature-vector-based representation with
the graph-based representation for system calls.

Wei et al., recorded system call invocations for 96 benign
applications and 92 malware samples by manually installing
and executing each application on an Android phone [28].
They converted the system call invocations into 1-gram, 2-
gram, 3-gram, and 4-gram feature vectors. However, their
method was not automated and thus cannot be applied to a
larger number of Android applications. They only recorded
the system call invocations after the application had been
started. Information about how the application was launched
and executed was ignored by the authors, and as a result their
strace log files are incomplete. In our method, we automatically
analyze each application. Since we strace the zygote process,
instead of the testing application, we are able to record the
complete set of system call invocations. Dimjasevic et al., also
recorded system call invocations for Android malware, and
then converted them into two representations [10]. One was
histograms and the other one was a variant of our Markov



TABLE VI: Timing statistics For HSCG, NSCG, MCSCG, and 4-gram-histogram

HSCG-top20 HSCG-full MCSCG-top20 MCSCG-full NSCG-2 NSCG-3 NSCG-4 4-gram-histogram
Label dimension 23 213 232 2132 232 233 234 234

CRS dimension 8 17 26 40 27 48 69 2114
Compute (sec) 38 68 177 225 172 276 369 12

Chain representation. Canzanese et al. [8], recorded system
call traces for Windows binaries and convert them into n-gram
vectors. Classification algorithms including logistic regression,
naive Bayes, random forests, nearest neighbors, and nearest
centroid were tested. The methods proposed in Zhang et
al., [28], Dimjasevic et al., [10], and Canzanese et al., [8]
are reimplemented as the baseline in this paper.

Canali et al., performed a thorough evaluation of accuracy
of system-call-based Windows malware detection [6]. They
built different signatures of system calls based on n-grams, n-
bags, and n-tuples. Then, a signature matching is performed to
detect malware. Our method is different because our method is
not signature-based. Anderson et al., compared Markov Chains
with n-gram representations based on instruction traces col-
lected from Windows executables [2]. Wagner et al., proposed
a graph model based on Linux system call traces which is very
similar to our HSCG [27]. However, their random walk graph
kernel is expensive and does not scale. In our work, we adapt
previous representations and propose novel representations for
comparison. We also compress the graphs and parallelize the
graph kernel to achieve reasonable computation time.

IX. CONCLUSION AND FUTURE WORK

In this paper, we evaluate the classification performance
of traditional feature-vector-based representations and novel
graph-based representations for system call invocations. We
first implement the traditional histogram, n-gram, and Markov
chain representations for system call usage in Android malware
analysis. To improve the classification accuracy of the tradi-
tional feature-vector-based representations, we propose three
graph-based representations where each process is treated as
a vertex and labeled with a feature vector. Graph kernels are
then applied on the graph-based representations to compute
graph similarities that are subsequently classified with SVM
algorithm. To speed up the graph kernel computation, we com-
press the graphs and parallelize the computation by utilizing
a multi-core CPU.

To evaluate these representations, we collected a dataset
consisting of 4002 benign and 1886 malicious Android ap-
plications. We first show by feeding interaction events into
dynamic analysis, the classification accuracy can be greatly
improved. Subsequent experiments on this dataset showed
graph-based representations are capable of improving the
classification accuracies of the corresponding feature-vector-
based representations by 5.2% on average. We also show that
different representations can be combined together to further
improve the performance by 0.4%.

Future work includes but not limited to: comparing n-
bag and n-tuple representations with their corresponding graph
ones, collecting more applications for experiments, and ex-
tracting the processes specifically involved in the malicious

behavior from the graph representation to reduce the graph
size.
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