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ABSTRACT
In this paper we present a method for coronary artery motion track-
ing in 4D cardiac CT data sets. The algorithm allows the automatic
construction of a 4D coronary motion model from pre-operative CT
which can be used for guiding totally-endoscopic coronary artery
bypass surgery (TECAB). The proposed approach is based on two
steps: In the first step, the coronary arteries are extracted in the
end-diastolic time frame using a minimal cost path approach. To
achieve this, the start and end points of the coronaries are identi-
fied interactively and the minimal cost path between the start and
end points is computed using the A* graph algorithm. In the sec-
ond stage the coronaries are tracked automatically through all other
phases of the cardiac cycle. This is achieved by automatically iden-
tifying the start and end points in subsequent time points through a
non-rigid template-tracking algorithm. Once the start and end points
have been located, the minimal cost path is constructed in every time
frame. We compare the proposed approach to two alternative ap-
proaches: The first one is based on a semi-automatic extraction of
the coronaries with start and end points manually supplied in each
time frame and the second approach is based on propagating the ex-
tracted coronaries from the end-diastolic time frame to other time
frames using non-rigid registration. Our results show that the pro-
posed approach performs significantly better than non-rigid registra-
tion based method and that the resulting motion model is comparable
to the motion model constructed from semi-automatic extractions of
the coronaries.

Index Terms— Image Registration, Motion Detection and
Tracking, Image Guided Surgery, Cardiovascular Image Analysis

1. INTRODUCTION

As one of the leading causes of death worldwide, coronary artery
disease occurs due to the failure of blood circulation to supply ade-
quate oxygen and nutrition to cardiac tissues. It is typically caused
by the excessive accumulation of atheromatous plaques and fatty de-
posits within certain regions of the arteries which restricts the blood
flow. To treat this disease, arteries or veins grafted from the pa-
tient’s body are used to bypass the blockages and restore the sup-
ply to the heart muscle. Based on image-guided robotic surgical
system, totally endoscopic coronary artery bypass (TECAB) surgery
has been developed to allow clinicians to perform the bypass surgery
off-pump with three pin-hole incisions in the chest cavity, through
which two robotic arms and one stereo endoscopic camera are in-
serted. However, 20-30% conversion rates from TECAB surgery to

the conventional invasive surgical approach [1, 2] have been reported
due to the vessel misidentification and mis-localization caused by the
restricted field of view of the stereo endoscopic images.

The goal of our work is to construct a patient-specific 4D coro-
nary artery motion model from preoperative cardiac CT sequences.
By temporally and spatially aligning this model with the intraop-
erative endoscopic views of the patient’s beating heart, we expect to
assist the surgeon to identify and locate the correct coronaries during
the TECAB procedures [3, 4].

In previous work, Shechter et al. [5, 6] tracked coronary artery
motion in a temporal sequence of biplane X-ray angiography im-
ages. In their approach, a 3D coronary model is reconstructed from
extracted 2D centrelines in end-diastolic angiography images. The
deformation throughout the cardiac cycle is then recovered by a
registration-based motion tracking algorithm. The disadvantage is
that 3D reconstruction of the coronary is required. An alternative
approach for the extraction of the coronaries from cardiac CT has
been proposed by Metz et al. [7]: Here the coronaries are man-
ually or semi-automatically identified at one time frame and then
tracked throughout the cardiac cycle using non-rigid registration of
the multi-phase cardiac CT images. The restriction of this approach
is that highly localized motion of the coronaries can not be fully
recovered by the motion tracking of the entire heart.

In this paper, we present an approach for coronary motion track-
ing in cardiac CT images which significantly improves the accuracy
of motion tracking and reduces the manual interaction. The pro-
posed approach is based on an template fitting and tracking algo-
rithm which automatically identifies the start and end points of each
vessel in every time frame. Once the start and end points have been
identified the vessel is extracted as the minimal cost path between
both points. The proposed approach is compared to a registration
based approach similar to the one presented by Metz et al. [7] and
to manual tracking of the coronaries. This simplifies the 4D motion
modeling of the coronaries significantly.

2. METHOD

We first use contrast limited adaptive histogram equalization to im-
prove the image contrast. Due to the ECG pulsing windows applied
in the acquisition and reduced radiation dose [8], the signal-to-noise
ration is varying in the multiple-phase 4D data sets. To improve the
image quality, anisotropic filtering is used to reduce this noise and
preserve the cardiac chamber boundaries and vessel structures.

Using Euclidean distance as the heuristic term, A* graph search
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is performed at each phase in each dataset to extract the coronaries,
based on user-supplied start and end points for each vessel. We then
model the coronary motion using the hierarchy non-rigid registra-
tion of the CT sequence. Last but most importantly, small vessel
template estimation and fitting is proposed to identify the starting
and ending points of the coronaries. Combined with graph search,
this enables the automatic identification of seed points in each ves-
sels and also utilizes the accurate extraction of vessel paths based on
minimal cost graph search approach. We then compare the template
based approach with the non-rigid registration one by performing
non-parametric Kruskal-Wallis test.

2.1. Image Preprocessing

Before coronary artery extraction, the contrast in the cardiac CT im-
age sequences is enhanced by performing contrast limited adaptive
histogram equalization [9]. This improves the visibility of the coro-
nary arteries. Note that this step is carried out for the entire image
sequences so that intensities in all time frames are treated similarly.
After this contrast enhancement, we perform 4D anisotropic diffu-
sion [10] to smooth the image sequence spatially and temporally
while preserving edges and other salient features. Anisotropic diffu-
sion is performed by using a semi-implicit ADI scheme that is shown
to be stable and much faster than classical explicit scheme.

2.2. Identification of the coronary artery centerline using mini-
mal cost path

We first perform a coarse segmentation of the coronary arteries in
the CT image using a multiscale Hessian-based vessel enhancement
filter [11]. The filter utilizes the 2nd-order derivatives of the im-
age intensity after smoothing (using a Gaussian kernel) at multi-
ple scales to identify bright tubular-like structures with various di-
ameters. The six second-order derivatives of the Hessian matrix at
each voxel are computed by convolving the image with second-order
Gaussian derivatives at a pre-selected scale value.

Assuming a 3D image function I(x), the Hessian matrix at a
given voxel x at scale σ is denoted as Hσ(x). A vesselness term
V (x) is defined as in Frangi et al. [11] and is based on the eigen-
values and eigenvectors of Hσ(x). The vesselness response is com-
puted at a series of scales. The maximum response of the vesselness
filter at the corresponding optimal scale is obtained for each voxel of
the image. Once the vesselness at each voxel is computed it can be
used to define a minimal cost path between the start and end nodes.
The minimal cost path between the start S and end node E is ob-
tained using the A* graph search algorithm [12] in the end-diastolic
CT image. The location of the pair of nodes S and E is specified
semi-interactively. The uni-directional graph search algorithm eval-
uates the smallest cost from node S to current node x denoted as g(x)
and the heuristic cost from current node to node E denoted as h(x) to
determine which voxel to be selected as next path node. The search
algorithm finds the optimal path only if the heuristic underestimates
the cost. The Euclidean distance from x to E is used to calculate the
heuristic cost in our application. We assess each candidate node by
calculating the cost f(x) as:

f(x) = g(x′) +
1

V (x) + ε
+ δh(x). (1)

where g(x′) is the score of previous node. To initialize the cost func-
tion, g(x′) is set to be zero for the starting node S. ε is a small
positive constant added in to avoid the singularities. Parameter δ
is estimated as the ratio of the minimum cost of the vessel to the

Euclidean distance of the starting and ending nodes. By using the
heuristic term, the searching space is greatly reduced and the mini-
mum cost path can be found in real-time. When node E is reached,
the minimum cost path is reconstructed by tracing backwards to node
S. The algorithm finds a minimal cost path consisting of an ordered
set of discrete locations (voxels). After extraction of the path we es-
timate a B-spline representation of the centreline of the coronaries
that smoothly interpolates these voxel locations.

2.3. Method 1: Coronary motion tracking using non-rigid im-
age registration

The first approach for tracking the coronaries throughout the cardiac
CT sequence is based on non-rigid registration: The coronary motion
is obtained by estimating cardiac motion based on non-rigid image
registration using a free-form deformation model based on cubic B-
splines [13]. A series of registration steps is performed to register
each time frame to the reference image at end-diastolic phase. For
each frame we use the previous registration results as initial estima-
tion as shown in the middle row of Fig 1. Each registration proceeds
in a multi-resolution fashion, starting with a control point spacing of
40mm and ending with a spacing of 5mm. The non-rigid registration
algorithm uses normalised mutual information as the similarity mea-
sure between time frames. A gradient descent optimization is used
to find the optimal transformation. The extracted coronary arteries
in the end-diastolic phase are mapped to the other cardiac phases by
applying the deformation obtained from the finest registration step
as illustrated in the bottom row of Fig 1.
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Fig. 1. Illustration of coronary motion tracking using a non-rigid
registration approach

2.4. Method 2: Coronary motion tracking using template fitting

The second approach for tracking the coronaries throughout the
cardiac CT sequence is based on template localization and fitting.
A tubular segment model [14] is adopted to map a spatial coor-
dinate x to the intensity range [0, 1] through a template function
M(x; r, x0, �v). The template function defines an ideal vessel seg-
ment centered at point x0 running in the �v direction with radius r. A
vessel profile is defined to model the image intensity variation in the
cross-sectional plane perpendicular to the vessel direction.

Given the coronary centrelines extracted in the end-diastolic
time frame as shown in Fig. 2, the start and end points are selected
from each vessel centerline as the locations of the centers of the
vessel templates. The optimal vessel template together with the
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Fig. 2. (a) Post-processed end-diastolic image, (b) its extracted coro-
nary centerlines. Right coronary artery is shown in red, left anterior
descending artery in green, left circumflex artery in blue.

Fig. 3. Illustration of template estimation and fitting. (a) Initial esti-
mation of the template and (b) its mismatch with the vessel segment.
The template (a) is shown as yellow contour. (c) Fitted template after
optimization and (d) its overlap with the vessel segment.

corresponding local contrast and local mean intensity parameters
are obtained by solving the weighted least squared problem us-
ing Levenberg-Marquardt algorithm [14] in the end-diastolic time
frame. We then transform the center location x0 of each template
to its new estimated position x′

0 in the adjacent time frame by using
the deformation information obtained in Section 2.3. The direction
and radius estimates for each template at previous phase are used to
initialize the corresponding template at current time frame. The tem-
plate parameters are optimized again using Levenberg-Marquardt
optimization. After this the minimal cost path for this timeframe is
determined between the updated template locations. This procedure
is repeated in pair-wise order until the centerlines in all time frames
are obtained.

To illustrate the procedure, a post-processed image is shown
in Fig. 2, together with the extracted coronary arteries at the end-
diastolic phase for this data set. Starting point S0 and ending point
E0 are selected from the right coronary artery in this image. Tem-
plates are then constructed at these two points to fit with the vessel
segments in the same image. Points S0 and E0 are then transformed
to next time frame in order to construct the initial templates. Then
they are fitted to the local region of the image at corresponding time
frame. For illustration, in Fig. 3, a random vessel position is chosen
in one image. It shows the initial template position and its position
after template fitting.

3. RESULTS AND EVALUATION

To assess the performance of the two motion tracking strategies we
have performed experiments on five cardiac CT sequences. All of the
CT image sequences have twenty phases with various image dimen-
sions ranging from 256×256×89 to 256×256×188 voxels. Three
datasets have voxel dimensions of 0.7×0.7×0.8 mm3. The other

two datasets have voxel dimensions of 0.64×0.64×1.5 mm3. All
datasets have various degrees of artifacts that affect the segmenta-
tion and registration procedure. In particular the fast motion of the
heart in some time frames can lead to blurring or ghosting artifacts,
e.g. around the coronary artery. As a result of this the non-rigid
registration-based approach can only compensate for part of the de-
formation as shown Fig. 4.
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Fig. 4. The total coronary displacement (LAD, LCX, RCA) is shown
in column (a). The residual coronary displacement after non-rigid
registration is shown in column (b) and after template-based tracking
is shown in column (c). The results show that the template-based
tracking is able to model the coronary motion best.

In order to have a gold standard to evaluate the two different mo-
tion modeling approaches, the left anterior descending artery (LAD),
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left circumflex artery (LCX) and right coronary artery (RCA) are
extracted using the minimal cost path algorithm from five CT se-
quences, P1, P2, P3, P4, and P5. In all five patients, the start and end
points of the vessels have been identified manually and the results
of the minimal cost path extraction has been judged as correct. The
results of this are compared with the motion estimates of the LAD,
LCX and RCA as provided by the non-rigid registration and template
matching based approaches. To measure the agreement between the
gold standard and the motion tracking approaches, a distance mea-
sure as proposed in [15] is used to quantify the coronary motion
tracking errors. The results are shown in Fig. 4. The initial displace-
ment of each coronary artery is computed as the distance between
the centerline at end-diastole phase and the centerline at each other
phase and is shown in the first column (a). The second column (b)
shows the tracking error from non-rigid registration based approach.
It is measured as the distance between centrelines estimated via non-
rigid registration and the gold standard for each phase. The third
column (c) shows the tracking error using the template matching ap-
proach. Again, it is measured as the distance between centrelines
estimated via template fitting and the gold standard for each phase.

To measure whether the errors are significantly reduced using
the template fitting method compared to the non-rigid registration
method, a non-parametric Kruskal-Wallis test is performed to com-
pare the errors obtained for each vessel and for each subject using
these two methods. The results of this analysis is shown in Table 1 .
We consider that the errors are significantly smaller using template-
based approach when p-value of the test is below 0.05.

Table 1. P-values of Kruskal Wallis test on the errors
P1 P2 P3 P4 P5

LAD 0.44 0.0093 1.7e-06 1.2e-07 0.0018

LCX 0.43 0.0015 1.2e-04 1.4e-06 1.7e-05

RCA 0.049 2.6e-05 2.1e-07 6.2e-07 1.8e-07

4. CONCLUSIONS AND FUTURE WORK

We have presented a novel approach for patient-specific coronary
artery segmentation and motion modeling from cardiac CT se-
quences which combines the template matching and graph search
algorithm. The proposed method has been tested on five clinical
CT datasets. By constructing a 4D motion model of the coronaries
from pre-operative cardiac images and aligning the 4D coronary
model with the series of 2D endoscopic images acquired during the
operation, we aim to assist the surgical planning and provide image
guidance in robotic-assisted totally endoscopic coronary artery by-
pass (TECAB) surgery. Through this work, we expect to reduce the
conversion rate from TECAB to conventional invasive procedures.
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