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Abstract. In this paper, we present an algorithm for coronary artery segmentation and tracking in dynamic cardiac
CT sequences. The algorithm allows the automatic construction of a 4D coronary motion model from pre-operative
CT which can be used for guiding totally-endoscopic coronary artery bypass surgery (TECAB). The A* graph search
algorithm is used for tracking the coronary arteries through different time frames automatically. First, a Hessian-
based vesselness filter is used to enhance tubular-like sturcture in the cardiac CT images. Then a smooth window
function is used to highlight the intensity region where the coronaries appear. A cost function is constructed based
on vesselness and intensity information. A common problem in dynamic cardiac CT is reconstruction artifacts
occuring due to the cardiac and respiratory motion. To enable the tracking of the coronaries in these cases we
use prior probability information from previous time frames to increase the robustness of the tracking. We have
validated the accuracy of the proposed tracking algorithm by comparing the automatically tracked centerlines of the
coronaries in each time frame with the manually extracted coronary centerlines. The average error of the tracking is
0.82mm for CT sequences I, 0.85mm for CT sequences II.

1 Introduction

As one of the leading causes of sudden death nowadays, coronary artery disease occurs due to the failure of the coronary
circulation to supply adequate oxygen and nutrition to the myocardium and surrounding tissue. The typical cause of
this insufficient supply is the built-up of plaque and fatty deposits in the artery walls, narrowing the vessels. To relieve
this risk, arteries or veins grafted from patient’s body are used to bypass the blockages and improve the supply to the
heart muscle. Conventional bypass surgery requires invasive sternotomy and the use of a cardiopulmonary bypass,
which leads to long recovery period for the patient and has high infectious potential. Totally endoscopic coronary
artery bypass (TECAB) surgery based on image guided robotic surgical approaches have been developed to allow
the clinicians to conduct the bypass surgery off-pump with only three pin holes incisions in the chest cavity, through
which two robotic arms and one stereo endoscopic camera are inserted. However, the restricted field of view of the
stereo endoscopic images leads to possible vessel misidentification and coronary artery mis-localization. This results
in 20-30% conversion rates from TECAB surgery to the conventional invasive surgical approach [1–3].

In this work, we aim to construct a patient-specific 4D coronary artery motion models from preoperative dynamic
cardiac CT scans. Through temporally and spatially aligning this model with the intraoperative endoscopic views of
the patient’s beating heart, this has the potential to assist the surgeon to identify and locate the correct coronaries during
the robotically-controlled TECAB precedures.

Previous work on coronary tracking has focused on X-ray angiography. For example, Shechter et al [4–6] tracked
coronary artery motion through a temporal sequence of biplane X-ray angiography images. A 3D Coronary model is
reconstructed from extracted 2D centrelines in end-diastole angiography images. Registration based motion tracking
algorithm is designed to recover the set of deformations along the cardiac cycle. An advantage of the proposed approach
here is the fact that no 3D reconstruction from X-ray images is required in order to perform 3D coronary motion
tracking. This simplifies the 4D motion modelling of coronaries significantly.

2 Method

A 4D motion model of the heart and the coronary arteries is needed for guiding the robotic TECAB procedure. This
is achieved by segmenting the coronaries and the left ventricle from each time frame in dynamic CT image sequences.
The resulting patient-specific motion model can then be used to augment the intraoperative images acquired with
stereo-endoscope of the daVinci robot.
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2.1 Multi-scale Vessel Enhancement

A coarse segmentation of the coronaries arteries in CT images is performed using a multiscale Hessian-based vessel
enhancement filter [7]. The filter utilizes the 2nd-order derivatives of the image intensity after smoothing (using a
Gaussian kernel) at multiple scales to identify bright tubular-like structures. The six second-order derivatives of the
Hessian matrix at each voxel are computed by convolving the image with second-order Gaussian derivatives at pre-
selected scale value.

Assuming a continuous 3D image function I(p), the Hessian matrix at a given voxel p at scale σ is denoted as Hσ(p).
Let |λ1| ≤ |λ2| ≤ |λ3| denote the eigenvalues of the matrix Hσ(p) and ~v1,~v2,~v3 are the corresponding eigenvectors.
The principal curvature directions are then given by ~v2 and ~v3. Since the coronaries appear as bright tubular structure
surrounded by dark soft tissue in CT images, each vessel certre point corresponds to a local intensity maximum in the
plane defined by the corresponding eigenvectors ~v2 and ~v3. Thus, both λ2 and λ3 for a vessel point should be negative.
We use the vesselness definition for voxel p at scale σ as proposed by Frangi et al. [7]
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The parameter A is designed to distinguish between the plate-like and line-like structures. B reflects the deviation
from blob-like structure and parameter C differentiates regions with high contrast from low contrast background. The
parameters α, β, γ control the sensitivity of the tubular filter to A,B and C in the above equation. For parameter
selections, we refer to Lindeberg et al [8]. In our experiments, we set the parameters α = 0.5, β = 0.5 whereas γ is
chosen as the largest norm of the eigenvalues across the whole image. The vesselness response is computed at four
different scales, namely σ = 0.5, 1, 2, 4. The maximum response of the vesselness filter at the corresponding optimal
scale is computed for each voxel of the image. The calculated vesselness image is used to facilitate the coronary
extraction and tracking.

2.2 Prior Information for Coronaries Tracking in Dynamic CT

In some frames of the dynamic CT, the coronaries are difficult to extract. This is especially true in those phases during
the cardiac cycle in which the heart is rapidly contracting or expanding. To allow the reliable extraction of the coronary
arteries in these frames we have developed a framework which provides prior information about the location and shape
of the coronary arteries in these frames. The basic idea of using prior information for tracking is that the location and
shape of the coronary arteries is likely to be similar in subsequent frames. Thus, we are using the extracted coronary
centrelines from frame t to assist the extraction in next frame t+ 1. We define the prior probability of a voxel in time
frame t + 1 to be part of the coronaries as a Gaussian probability P distribution centred at the voxel locations of the
coronaries in time frame t. The parameter σ is chosen depending on the amount of motion between time frames: If the
motion is rapid a large value of σ is chosen, if the motion is less rapid a small value of σ can be chosen.

In order to improve the estimate of the prior probability described above we additionally estimate the cardiac motion
between time frames and then transform the prior probability using this transformation. In our case the cardiac motion
between two adjacent frames is obtained from non-rigid image registration using a free-form deformation model based
on cubic B-splines [9]. The motion is modelled using the following cubic B-spline model:

T (x, y, z) =
3∑
l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)φi+l,j+m,k+n (2)

A series of registration steps is performed to register each time frame to its subsequent time frame. The non-rigid
registration algorithm optimizes normalised cross correlation as similarity measures between time frames. A gradient
descent optimization is used to find the optimal transformation. Using the resulting transformation the prior probability
information is propagated from each time frame to the subsequence time frame.



2.3 Coronaries Tracking Using the A* Graph Search algorithm

The A* graph search algorithm [10] is implemented to find the minimum cost path from a starting node S to an ending
node E. The pair of nodes S and E are supplied by the user in each frame. The uni-directional graph search algorithm
evaluates the smallest cost from node S to current node x denoted as g(x) and the heuristic cost from current node to
node E denoted as h(x) to determine which voxel to be searched next. The search algorithm finds the optimal path
only if the heuristic underestimates the cost. Euclidean distance from x to E is used to calculate the heuristic cost in
our application. The heuristic measurement we used is guaranteed to be lower than true optimal path cost.

Since the multiscale vessel enhancement only measures local contrast without taking the surrounding region informa-
tion into account, a smooth window based on the Gaussian error function erf is constructed to identify and highlight
the intensity regions containing coronaries [11].
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1
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2
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where a1 is the estimation of lowest intensity value for a voxel along the coronaries, a2 is the highest one. The
parameter b controls the steepness of the smoothing window. Using eq. (3) and combining this with the vesselness
filter defined in the previous section, we define the cost CI as, for each voxel p as:

CI(p, σ) =
1

V (p, σ)(W (p))κ + ε
(4)

where V (p, σ) is the vesselness of voxel p at the optimal scale as described in section 2.1. Parameter κ controls the
influence of W . ε is a small positive constant added in to avoid the singularities.

To automatically extract the coronaries from the CT sequences with varied image qualities, we additionaly add the
prior information. We evaluate the score g(x) as:

g(x) = g(x′) + CI(x) ∗ (|ln(P (x))|)η. (5)

where parameter η defines the importance of prior information for tracking in current frame. To initialize the cost
function, g(x′) for the starting node S is set to be zero. P (x) is the prior probability for voxel x from section 2.2.

The whole cost function for assessing each candidate node is defined as

f(x) = g(x) +
δh(x)

2
(6)

where δ is estimated as the ratio of the minimum cost of the vessel to the Euclidean distance of the starting and ending
nodes in the previous time frame. By using the heuristic term, the searching space greatly is reduced and the minimum
cost path can be found in real-time. When node E is reached and it also has lower f function value than any other
candidates in the searching queue, the minimum cost path is reconstructed by tracing backwards to node S.

The minimum cost path detetection algorithm results in a discrete path consisting of an ordered set of discrete locations
(voxels). After extraction of the path we estimate a B-spline representation of the centreline of the coronaries which
smoothly approximates these voxel locations.

3 Results and Evaluation

3.1 Coronary Artery Extraction

Coronary arteries are extracted with A* graph search algorithm from several CT sequences. The first dataset is ten-
phased cardiac sequences, with image dimensions 512×512×231 voxels, voxel dimension 0.62×0.62×0.5 mm. It has
minor artifacts due to the reconstruction errors when rapid cardiac motion occurs. This enable us to use graph search
with the vesselness based approach to automatically extract the LAD, LCX and RCA with a single pair of start and end
nodes for each branch of the coronaries. The parameters for the dataset are selected as: a1 = 1100, a2 = 1500, b =
0.1, κ = 0, η = 0. delta is initialized to 10 for the first time frame.

We have also tested the algorithm on another dataset which is characterized by more severe artifacts, in particular
along the right coronary and left circumflex. Dataset II has ten time frames, with image dimension 512×512×298



voxels, voxel dimension 0.36×0.36×0.5 mm. Prior coronary models were constructed for each frame in Dataset II to
incorporate with probability approach. The parameters are chosen as a1 = 1000, a2 = 1450, b = 0.1, κ = 1, η =
1, δ = 0. Heuristic is used to in both approaches to reduce the searching time. Figure 1 shows two image slices and
their coronary extractions from the CT sequences. The rectangles mark out the region of interest.

Figure 1. CT Image and Coronary Artery. From left to right, (1) CT slice from dataset I. (2) extracted coronary from
(1). (3) CT slice with severe artifacts from dataset II. (4) extracted coronary from (3).

The automatically tracked 3D coronary centerlines from second dynamic CT sequences are shown in Fig. 2. The red
lines denote the right coronary artery, the green lines denote the left anterior descending and its branches and the blue
lines denote the left circumflex artery and its branches.

Figure 2. Automatically Extracted Coronary Arteries

3.2 Coronary Motion Model and its Evaluation

In order to assess the quality of automatic extraction results, the distance between the manual segmentations M and
automatic extractions U of the coronaries in each time frame is measured. The distance is defined as

D (M, U) =
1
NM

∑NM

i=1 ‖mi − l(mi, U)‖2 +
1
NU

∑NU

j=1 ‖uj − l(uj ,M))‖2 (7)

where NM and NU are the number of points representing vessel M and vessel U correspondingly. For each point
mi ∈M, l(mi, U) calculates the closest point of mi on the automatically extracted vessel U . Similarly, for each point
uj ∈ U, l(uj , M) defines the closest point of uj on the vessel M .

By automatically tracking the coronaries from each timeframe in CT sequences, the coronary motion model can be
formed. The amount of deformation of the coronaries during the cardiac cycle can be quantitatively measured by
computing the distance between the certerlines at current frame and in the end-diastole timeframe I1 using Equation 7.

4 Discussion and Future Work

We have presented a novel approach for patient-specific coronary artery tracking and motion modeling from dynamic
cardiac CT images to assist the totally endoscopic coronary artery bypass surgery. The proposed method has been
tested on the clinical CT datasets acquired from two subjects. By constructing a 4D motion model of coronaries from
pre-operative cardiac images and aligning the 4D coronary model with the series of 2D endoscopic images capture
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Figure 3. The coronary error before tracking is measured as the distance between the automatically extracted centreline
at end-diastole of the cardiac cycle and all the other automatic extractions in the rest timeframes. The error after tracking
is calculated as the distance between the manual and automatic segmentation for each coronary artery in each of the
ten frames.

during the operation, we aim to assist the surgical planning and provide image guidance in robotic-assited totally
endoscopic coronary artery bypass (TECAB) surgery. Through this work, we expect to reduce the conversion rate from
TECAB to conventional invasive procedures.
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