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ABSTRACT

In this paper, we present a novel approach for coronary artery motion modeling from cardiac Computed Tomog-
raphy(CT) images. The aim of this work is to develop a 4D motion model of the coronaries for image guidance
in robotic-assisted totally endoscopic coronary artery bypass (TECAB) surgery. To utilize the pre-operative
cardiac images to guide the minimally invasive surgery, it is essential to have a 4D cardiac motion model to be
registered with the stereo endoscopic images acquired intraoperatively using the da Vinci robotic system. In
this paper, we are investigating the extraction of the coronary arteries and the modelling of their motion from
a dynamic sequence of cardiac CT. We use a multi-scale vesselness filter to enhance vessels in the cardiac CT
images. The centerlines of the arteries are extracted using a ridge traversal algorithm. Using this method the
coronaries can be extracted in near real-time as only local information is used in vessel tracking. To compute
the deformation of the coronaries due to cardiac motion, the motion is extracted from a dynamic sequence of
cardiac CT. Each timeframe in this sequence is registered to the end-diastole timeframe of the sequence using
a non-rigid registration algorithm based on free-form deformations. Once the images have been registered a
dynamic motion model of the coronaries can be obtained by applying the computed free-form deformations to
the extracted coronary arteries. To validate the accuracy of the motion model we compare the actual position of
the coronaries in each time frame with the predicted position of the coronaries as estimated from the non-rigid
registration. We expect that this motion model of coronaries can facilitate the planning of TECAB surgery, and
through the registration with real-time endoscopic video images it can reduce the conversion rate from TECAB
to conventional procedures.

Keywords: Image-Guided Therapy, Motion Analysis, Registration, Segmentation, Vascular Analysis

1. INTRODUCTION

1.1 Purpose

As the most common cause of heart disease, coronary artery disease is the leading cause of sudden death in
the western world. Conventional bypass surgery requires invasive sternotomy and the use of a cardiopulmonary
bypass, which leads to long recovery period and has high infectious potential. Totally endoscopic coronary artery
bypass (TECAB) surgery based on image guided robotic surgical approaches have been developed to allow the
clinicians to conduct the bypass surgery off-pump with only three pin holes incisions in the chest cavity, through
which two robotic arms and one stereo endoscopic camera are inserted. Figure 1 shows the endoscopic views
taken during the TECAB surgery, with the operating instruments present.

However, the restricted field of view of the stereo endoscopic images, possible vessel misidentification and coro-
nary artery mis-localization can cause relatively high conversion rates from TECAB surgery to the conventional
invasive surgical approach.1

An prototype image-guided TECAB system has been recently developed by M. Figl et al previously.2 The
system requires a 4D preoperative model of the coronary arteries and myocardium which is then aligned with the
endoscopic view of the patient’s beating heart. This allows the superimposition of structures of interest such as
the coronary using augmented reality on top of the endoscopic video. The work presented in this paper focuses
on the 4D model construction part in the system.

In this paper we present a fast and accurate method for extracting coronary centerlines and tracking its
motion from 3D preoperative Computed Tomography image sequences. We aim to construct patient-specific 3D



Figure 1. Endoscopic stereo views (left and right) of the coronary arteries during the TECAB surgery.

+ time coronary artery motion models from preoperative CT images. Through temporally and spatially aligning
this model with the intraoperative endoscopic video images, we hope this work can assist surgical planning and
help conducting the TECAB surgery.

1.2 Related Work

The extraction of blood vessel has been studied extensively in the past two decades. Previous research on vessel
extraction has been concentrated on 2D X-ray angiography, 3D Magnetic Resonance Angiography (MRA) and
Computed Tomography Angiography (CTA), focusing on brain and cardiac images. A comprehensive review
about vessel extraction can be found in Kirbas et al.3

Various vessel enhancement techniques have been proposed in last decade. Three of the post popular tech-
niques for curvilinear structure filtering are presented by Frangi et al. ,4 Lorenz et al. 5 and Sato et al. 6 All
of these approaches are based on extracting information from the second order intensity derivatives at multiple
scales to identify local structures in the images. Based in the information it is possible to classify the local
intensity structure as tubular-like, sheet-like or blob-like.

Existing vessel extraction methods can broadly be divided into two categories: skeleton and non-skeleton
approaches. Skeleton methods explicitly extract the vessel centerlines and represent the results as parametric
curves or discrete sets of points. Two main skeleton methods are closely related to the work we present: Frangi et
al. 7 propose a model-based method using a deformable contour techniques. A central vessel axis curve coupled
with a tensor product B-spline surface is used to model the linear vessel segments. In this approach the vessel
centerline is approximated using a B-spline curve. The deformation process is based on moving the control points
of B-spline towards points which have a high likelihood of lying along the central vessel axis. A vesselness filter is
used as the external force which drives the deformation. The vesselness filter reaches its maximum at the center
of the vessel and explicitly takes information of vessel radius into account. Secondly, a tensor product B-spline
surface is used to model the vessel wall. Based on the observation that vessel centerlines often corresponds to
intensity ridge in the TOF-MRA images, Aylward and Bullitt 8 propose a ridge travsersal algorithm to track the
vessel centerlines. This method begins from a user-supplied seed point, then optimizing a pre-defined ridgeness
function to obtain the closest local ridge point.

Many methods have also been developed for the extraction of cardiac motion from dynamic image sequences
such as CT or MR. Optical flow,9 active contour models,10 HARP 11 and image registration approaches.12

Compared with other methods which rely on specialized image sequences such as tagged MR or HARP, non-
rigid image registration based on voxel similarity measures does not require any explicit feature extraction and
can be used on both MR and CT images. Moreover, given different types of images, the voxel similarity measure
can be chosen to calculate a suitable metric for that particular type of images. For cardiac motion tracking,
non-rigid registration based on a free-form deformation (FFD) model has shown promising results in previous
work presented by Chandrashekara et al.13



2. METHODS

A 4D motion model of the beating heart with coronary arteries is needed for guiding the TECAB procedure.
This is achieved by extracting the vessel centerlines from the end-diastole time frame of the CT image sequence,
aligning the sequence of cardiac CT images to the end-diastole time frame, and applying the deformation to the
extracted coronaries at end-diastole. The resulting patient-specific motion model can then be used to augment
the intraoperative images acquired with stereo-endoscope of the daVinci robot.

2.1 Coronary Artery Extraction

The CT images are first processed with a multiscale Hessian-based vessel enhancement filter.7 The filter utilizes
the 2nd-order derivatives of the image intensity at multiple scales to identify bright tubular-like structures. The
maximum response of this filter over a set of different scales is collected to provide a coarse segmentation of the
coronary arteries. The vesselness of each voxel is computed from the analysis of the Hessian matrix of second
derivatives in the local area after convolving with Gaussian kernel at pre-selected scale value.

Assuming a continuous image function I(p), p = (x, y, z), the Hessian matrix for the 3D image at any point
p is defined as:
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Let |λ1| > |λ2| > |λ3| denote the eigenvalues of the Hessian matrix and ~v1,~v2,~v3 are the corresponding eigenvec-
tors. The principal curvature directions are then given by ~v1 and ~v2.

Since vessels have higher intensity in CT images than soft tissues, one can define vessels in terms of intensity
ridges. For n-dimensional image ridge points can be defined as points which are local intensity maxima in N − 1
dimensions. Thus, for a 3D image the corresponding eigenvalues λ1 and λ2 for ridge points should be negative:

λ1 < 0 (2)

λ2 < 0 (3)

We use the vesselness definition at scale σ as proposed by Frangi et al. 7
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The parameter A distinguishes between the plate-like and line-like structures. The parameter B reflects the
deviation from blob-like structure and parameter S differentiates regions with high contrast from low contrast
background. The parameters α, β, γ control the sensitivity of the tubular filter to A,B and C in the above
equation.

For parameter selections, we refer to Lindeberg et al.14 In our experiments, we set the parameters α = 0.5,
β = 0.5, γ = 1. The vesselness response is computed at different scales, namely σ = 0.25, 0.5, 1, 2, 4, 8. The
maximum response with corresponding optimal scale is obtained for each voxel of the image. The calculated
vesselness image is used to facilitate the identification of coronaries.



2.2 Cardiac Motion Extraction by Image Registration

The motion of the heart is obtained from non-rigid image registration using a free-form deformation model based
on cubic B-splines.15 In this approach the motion is modelled using the following model:

T (x, y, z) =
3∑
l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)φi+l,j+m,k+n (5)

Here Bi corresponds to the cubic B-spline basis functions:

B0(u) = (1− u)3/6

B1(u) = (3u3 − 6u2 + 4)/6

B2(u) = (−3u3 + 3u2 + 3u+ 1)/6

B3(u) = u3/6

The image at the end-diastole frame of the cardiac cycle is chosen as the target image. In our two datasets, the
end-diastole is at 60% of the cardiac cycle. For simplicity, we refer to this as frame 60 in this paper. Each image
from the rest of the image sequence It(p) (t = 00, 10, 20, 30, 40, 50, 70, 80, 90) is chosen as the source image and
temporally registered to the target image I60(p).

We evaluate and optimize four different similarity measures for this procedure, namely, sums of squared
difference (SSD), cross correlation (CC), mutual information (MI) and normalized mutual information (NMI).
A gradient descent optimization procedure is used to find the optimal deformation. From the results of the
non-rigid image registration, we can determine the corresponding deformation Tt due to the cardiac motion in
the CT datasets.

2.3 Modeling of Coronary Artery Motion and Assessment

The cardiac motion extracted above can be used to predict the motion of coronaries in every time frame. For this
the coronaries extracted from end-diastole timeframe are transformed with the obtained deformation information
Tt to each time frame to form the coronary motion model.

In order to assess the quality of the deformation model, the distance between the predicted centerline and
the automatically extracted vessels of each time frame is measured to assess the accuracy of applying the whole
cardiac motion to coronaries deformation. We define this distance as

D (S, R, T ) =
1
Ns

∑Ns
i=1 ‖vi − l(vi, T (R))‖2 +

1
Nr

∑Nr

j=1 ‖pj − l(pj , S))‖2 (6)

where S and R are the source and reference images which are being registered. Ns and Nr are the number
of vertices representing vessel S and vessel R correspondingly. For each vertex vi ∈ S, l(vi, T (R)) calculates
the closest vertex of vi on the transformed vessel T (R). Similarly, for each vertex pj ∈ T (R), l(pj , S) defines
the closest vertex of pj on the vessel S. We expect the coronary motion can be recovered from the cardiac and
respiratory deformation obtained from free form registration.

3. RESULTS

3.1 Vessel Enhancement and Extraction

A volume rendering of preoperative cardiac CT image from patient dataset I is shown in Figure 2. The coronary
arteries and myocardial surfaces are displayed in three views. From left to right, left circumflex artery and
branchs (LCX), left anterior descending artery and a diagonal branch (LAD) and right coronary artery (RCA)
are visible.

The automatically extracted 3D coronary centerlines from this volume are shown in Figure 3. The red line
denotes the right coronary artery, the blue line denotes the left anterior descending and its branches and the
blue line denotes the left circumflex artery and its branches.



Figure 2. Volume rending of CT image in the end-diastolic time frame from patient dataset I.

Figure 3. An extracted coronary model of the coronary centerlines. Red: right coronary artery, green: left anterior
descending coronary artery and branch, blue: circumflex artery and branch.

3.2 Cardiac Motion Tracking

The deformation of the heart throughout the cardiac cycle from one patient dataset is illustrated in first two
rows of Figure 4. The corresponding transformed image after alignment with reference (target) image is shown
in the bottom two rows of Figure 4. Here we have used with the correlation coefficient to measure the similarity
between the images.

3.3 Coronary Artery Motion Modelling

To evaluate the proposed approach, the coronary centerlines are extracted automatically from all images of
the cardiac CT sequence. We then compare the predicted location of the centrelines obtained by applying the
non-rigid deformation with the actual position of the centrelines.

The distance between the transformed vessel and extracted one in each time frame is measured using eq. 6.
The current registration method can only recover part of the coronary motion. The reasons for this are two-fold:
First, the image quality of dynamic cardiac CT is limited. This is especially true for CT image reconstructions
during those times in the cardiac phase in which the heart moves rapidly. The second problem is the fact
that the image registration is driven by large scale features such as the epicardium and endocardium. We are
currently investigating better transformation and registration models to overcome these problems and improve
the prediction of the coronary motions.



Figure 4. Example of 10 time fromes of a patient dataset before nonrigid registration shown in top two rows (from left to
right, top to bottom sequentially) and afterwards (as shown in bottom two rows). The 2nd Frame in row 2 was chosen as
the reference (target image).

4. DISCUSSION

Mourgues et al. 16 have proposed a method to reconstruct the 3D coronary tree from one pair of patient-specific
biplane X-ray angiography images. Shechter et al. 17 have presented a motion tracking method for the coronary
arteries from a temporal sequence of biplane X-ray angiograms. But to fully utilize the most common pre-
operative patient data, we investigate the coronary vessel extraction and motion tracking from clinical coronary
CT scans.

5. CONCLUSIONS

We have presented a novel approach for patient-specific coronary tree construction and motion modeling from
CT images to assist the totally endoscopic coronary artery bypass surgery. The proposed method has been tested
on the clinical CT datasets acquired from two subjects. By aligning the 4D coronary model with the series of
2D endoscopic images grabbed during the operation, we hope to assist the planning and conducting of TECAB
surgery, and also reduce the conversion rate from TECAB to more invasive conventional procedures.
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