
A New Perspective on Processing-in-memory Architecture Design
Dong Ping Zhang, Nuwan Jayasena, Alexander Lyashevsky, Joseph Greathouse, Mitesh Meswani

Mark Nutter, Mike Ignatowski
Research Group, AMD, California, USA

dongping.zhang@amd.com

Abstract
As computation becomes increasingly limited by data movement

and energy consumption, exploiting locality throughout the memory
hierarchy becomes critical for maintaining the performance scaling
that many have come to expect from the computing industry. Mov-
ing computation closer to main memory presents an opportunity to
reduce the overheads associated with data movement. We explore the
potential of using 3D die stacking to move memory-intensive com-
putations closer to memory. This approach to processing-in-memory
addresses some drawbacks of prior research on in-memory comput-
ing and appears commercially viable in the foreseeable future. We
show promising early results from this approach and identify areas
that are in need of research to unlock its full potential.

Keywords processing-in-memory, memory system, data locality,
performance model, memory-intensive applications

1. Introduction
While the advancement of processor technology has rapidly in-

creased computational capabilities, improvements in bandwidth and
latency to off-chip memory have not kept up. Further, an increas-
ing proportion of power in computing systems is being spent on data
movement, especially off-chip memory accesses. These problems are
exacerbated for emerging workloads that exhibit memory intensive
behaviors with irregular access patterns and limited data reuse. Mov-
ing computation closer to where the data reside has the potential to
improve both the performance bottlenecks and energy costs associ-
ated with memory access.

We investigate the benefits of reducing the aggregate distance
of data movement, and hence its associated energy consumption,
through processing-in-memory (PIM) implemented using 3D die
stacking. There are two aspects to achieving this: firstly, to plan
the data layout in memory such that in-memory computation with
a high degree of locality becomes feasible; secondly, to dispatch
computation to locations where the input data reside. Programming
models and systems software also play a key role in enabling the
realization of PIM capabilities. Therefore we highlight the challenges
that must be addressed by architecture and software communities to
fully exploit the potential of in-memory processing.

2. Background
PIM attracted significant attention in the research community for

a short period around the beginning of this century [1, 2]. Many
of those efforts focused on one of two approaches. Efforts such as
IRAM [3] integrated embedded DRAM on logic chips. However, this
approach could not cost-effectively accommodate sufficient memory

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
MSPC’13, June, 2013, Seattle, Washington.
Copyright c© 2013 ACM 978-1-4503-1219-6/12/06. . . $15.00

capacity for mainstream high-performance systems due to the re-
duced density of embedded memory. Efforts such as ActivePages [4],
DIVA [5] and FlexRAM [6] integrated logic on memory dies. How-
ever, due to the reduced performance of logic implemented in DRAM
processes (typically multiple process generations behind contempo-
rary logic processes), such approaches resulted in in-memory pro-
cessors with reduced performance or highly specialized architectures
geared only for select operations. This in turn limited the applicabil-
ity and programmability of such PIMs which, along with the cost
implications of reduced DRAM density due to the presence of com-
pute logic, limited the adoption of such approaches.

We revisit the PIM concepts utilizing 3D die stacking to tightly
couple processors implemented in a logic process with memories
implemented in memory processes using through-silicon via (TSV).
This approach presents a different tradeoff in the PIM design space
that has somewhat lower bandwidth than processors on memory dies
but circumvents the issues of logic performance and memory density.
Further, this approach potentially enables the use of commercially
viable memory dies. A similar approach has been advocated in a
recent FlexRAM retrospective paper by J. Torrellas [7].

Direct stacking of memory on a processor limits memory capac-
ity to what fits within the processor die’s footprint. Further, processor
performance is throttled due to thermal considerations. To circum-
vent these limitations, we explore the integration of PIM within 3D
memory stacks as auxiliary processors under the control of a stan-
dalone host processor. While prior research has explored issues in
3D stacking of processors and memory [8, 9], our focus is on evaluat-
ing the performance characteristics of a compute node consisting of a
mainstream processor with a number of PIM-enabled memory stacks
attached to it. We focus our initial explorations on high-performance
computing (HPC) and other such domains that require large memory
capacity as well as high compute throughput.

3. PIM for HPC
An example node configuration suitable for our initial focus is

shown in Figure 1 from a high-level point of view. An overall sys-
tem geared for HPC may consist of many instances of the same or
similarly configured nodes. Here, an individual node includes a high-
performance host processor as well as stacked DRAM with PIM.

Figure 1. An example compute node design with PIM

The example use cases and respective benefits from PIM include,
but are not limited to: replacing read-update-store with op-and-store
to reduce the round-trips to memory and avoid synchronization; in-
creasing the efficiency of indirect memory accesses, e.g., pointer
chasing, arbitrary gather/scatter; avoiding reading data to the host

during memory layout transformation operations, e.g., matrix trans-
pose, convolutions; executing predefined memory intensive opera-
tions, e.g., reductions; last, and more broadly, executing arbitrary
program consisting of user-defined memory-intensive calculations.

PIM Simulation and Performance Model
Two broad categories of performance modeling are commonly

studied in the literature: structural and analytical models [10]. The
former uses simulation techniques to model systems, while the latter
abstracts design factors of interest into an analytical expression to
predict performance. Cycle-accurate simulation is commonly used
to evaluate design proposals because it allows researchers to directly
model how architectural changes interact with the system. However,
these simulators typically run many orders of magnitude slower than
native execution and quickly become intractable for workloads with
large data sets and unstructured access patterns, which are of high
interest for PIM evaluations. Therefore, we rely on analytical models
in conjunction with statistics gathered during native execution on
today’s hardware for early exploration of the PIM design space.

We design performance models to estimate the effects of changes
to PIM configuration, stacked DRAM, and interconnection between
these components. In essence, we run applications annotated with
PIM extensions on existing hardrware and gather both hardware-
supplied performance-monitoring data and the program’s critical
paths through happens-before analysis. A performance scaling model
is built based on the statistics collected, information about the under-
lying hardware and the modeled PIM system.

Evaluation
As a preliminary study, we evaluated the presented PIM archi-

tecture over two simple test cases: a multi-threaded implementation
of prefix sum computation and a data-parallel implementation of
a weighted sum of vectors kernel. The former is primarily latency
bound while the latter is bandwidth-limited.

Table 1 shows the performance of the parallel prefix sum bench-
mark on four CPU PIM processors normalized to the execution on
a 4-core host processor. Each PIM processor in config. 1 and 2 con-
sists of one CPU with normalized attributes compared with host CPU
listed in Table 1. As expected, performance improves for configura-
tions with lower memory latency despite the reduced execution fre-
quency of PIM processors. While the specific latency reduction in
a PIM processor is implementation-dependent, factors such as the
elimination of off-chip transfers, shorter wire delays and simpler
cache hierarchies can contribute to this reduction.

Table 1: Normalized parallel prefix sum performance on PIM
BaselinePIM config. 1PIM config. 2

Host CPU cores used 4
PIM cores used 4 4

Normalized core freq. 1 0.5 0.5
Normalized memory latency 1 0.7 0.5
Normalized execution time 1 0.87 0.77

Table 2: Normalized scaled vector add kernel performance on PIM
BaselinePIM config. 3PIM config. 4

Normalized FLOPs used 1 0.27 0.27
Normalized memory bandwidth 1 2 4

Normalized execution time 1 0.51 0.26

Table 2 shows the performance of the weighted sum of vectors
kernel running on 4 GPU PIM processors normalized to the exe-
cution on a high-performance GPU. Each PIM processor in config.
3 and 4 consist of one GPU with relative attributes normalized to
the host GPU configuration as shown in Table 2. To ensure a fair
comparison, we assume the baseline architecture also uses stacked
memory mounted on an interposer with the processor to achieve high
bandwidth. The PIM processors are still able to achieve higher intra-
stack bandwidth. We make conservative assumptions about intra-

stack bandwidth that could still enable the use of commodity DRAM
dies in a PIM-enabled memory stack. Modifications to the DRAM
dies could enable even greater performance gains.

These examples are prelimilary tests to demonstrate the poten-
tial benefits of PIM architecture design for two types of applications:
latency-bound and bandwidth-bound. Further application studies are
essential to better understand potential usage models and benefits of
PIM as well as to drive further development and refinement of our
evaluation tools and methodology. While the above evaluation fo-
cuses on performance, this approach also enables significant energy
savings due to a variety of factors including reduced off-chip and
on-chip data movement and execution of memory-bound tasks on in-
memory processors that are less aggressively designed (relative to
host processors).

Software Ecosystem

There are various issues to be considered around the interaction
between system software and PIM. One potential design point is to
assume that PIM devices are fully capable processors that can share
a single virtual address space with the host. This enables a path for
a range of multi-core OS capabilities to be adapted to in-memory
processors including virtual memory, preemptive multi-tasking, and
placement of tasks and memory objects in an environment supporting
non-uniform memory access. The application programming model
can potentially resemble existing models for heterogeneous multi-
core architectures. These include standard CPU threading and task-
ing models exposed via PIM-augmented APIs or additionally via ex-
tensions to pragmas such as OpenMP. Evolutions of standards for
heterogeneous compute, such as OpenCL, may additionally enable
task- and data-parallel programming models. Under this scenario,
legacy applications can be adapted to PIM and execute correctly
with only minimal modifications. Higher-level abstractions such as
libraries and domain-specific languages can ease the development of
highly-tuned applications for PIM-enabled systems. Run-time sys-
tems that exploit compile-time and dynamic profiling information
may optimize task placement between host and in-memory proces-
sors to further ease the transition to PIM-enabled architectures.

4. Conclusion

As computation becomes increasingly limited by data movement
and energy consumption, exploiting locality throughout the memory
hierarchy becomes critical to maintaining the performance scaling
that many have come to expect from the computing industry. Emerg-
ing 3D die stacking technology provides an opportunity to exploit
in-memory computation in a practical manner. Our early evaluations
show promising results in the ability of this technique to address data
movement bottlenecks and overheads.

However, broad adoption of PIM can only occur if there are ap-
propriate programming models and languages along with adequate
compiler, runtime, and operating system support. Simultaneous ad-
vancement in these aspects are yet to be addressed. While HPC and
other memory-intensive applications make a good starting point and
are likely to be among the first beneficiaries of PIM-enabled sys-
tems, nearly every segment of the computing landscape can benefit
from the performance and energy improvements that can be achieved
through PIM. We also need to take the cost of application refac-
toring into consideration while addressing the aforementioned sub-
jects. Therefore, high-level abstractions that express programmer in-
tent and available locality in architecture independent forms are also
important as they can enable efficient mapping to novel architectures
such as PIM with reduced programmer effort.

These areas present a number of exciting opportunities that the
research community must address to realize the full potential of PIM
capabilities that are enabled by emerging implementation techniques.

References
[1] D. Elliott et al. Computational RAM: Implementing Processors in

Memory. IEEE Design & Test, Volume 16 Issue 1, 1999.
[2] J. Lee et al. Automatically mapping code in an intelligent memory

architecture. International Symposium on HPCA, 2001.
[3] B. R. Gaeke et al. Memory-Intensive Benchmarks: IRAM vs. Cache-

Based Machines. IPDPS, 2002.
[4] M. Oskin et al. Active pages: a computation model for intelligent

memory. International symposium on computer architecture, 1998
[5] J. Draper et al. The architecture of the DIVA processing-in-memory chip.

Interntional Conference on Supercomputing, 2002.
[6] Y. Kang et al. FlexRAM: toward an advanced intelligent memory system.

International Conference on Computer Design, 1999.
[7] J. Torrellas. FlexRAM: Toward an Advanced Intelligent Memory System.

A Retrospective Paper, ICCD, Sep. 2012
[8] G. H. Loh, 3D-Stacked Memory Architectures for Multi-core Processors.

ISCA, 2008.
[9] C. Liu et al. Bridging the processor-memory performance gap with 3D

IC technology. IEEE Design & Test of Computers, 2005.
[10] S. Pllana et al. Performance Modeling and Prediction of Parallel

and Distributed Computing Systems: A Survey of the State of the Art.
International Conference on CISIS, 2007

