
High-level Programming Model Abstractions for Processing in Memory

Michael L. Chu Nuwan Jayasena Dong Ping Zhang Mike Ignatowski
AMD Research

Advanced Micro Devices, Inc.
{mike.chu, nuwan.jayasena, dongping.zhang, mike.ignatowski}@amd.com

Abstract
While the idea of processing in memory (PIM) has been around

for decades, both hardware and software limitations have kept it from
growing in practical, real-world use. Recent advancements in 3D
die-stacking technology have begun to make inroads towards solving
some of the implementation issues, but software programmability
questions remain. This position paper presents high-level program-
ming models as a solution for PIM programmability by abstracting
away many of the low-level architectural details. While we acknowl-
edge that expert programmers still will want low-level, detailed con-
trol for optimization, we see high-level programming abstractions as
a way to broaden the use of PIM to a larger audience of developers
and increase the adoption of PIM architectures in future systems.

1. Introduction
Processing in memory (PIM) was first proposed many years
ago to combat the significant problem of computational capa-
bilities far outpacing the improvements in off-chip memory
bandwidth and latency. In the decades since, that gap has only
increased, and problems have been exacerbated by an increas-
ing amount of power spent on data movement. PIM attempts
to solve these problems by embedding computational logic
with memory and allowing computation to occur where the
data resides, rather than vice versa. By moving computation
towards data, systems can benefit from increased bandwidth
and reduced energy.

While PIM architectures have been studied extensively in
the past [1][2][3][4][5][6][8], they have never gained traction
in real-world systems for a variety of reasons. Two signif-
icant technical reasons stand out: using a memory process
technology to build computational logic resulted in poor per-
formance, and the lack of a coherent programming model for
developers made it difficult to exploit the underlying hardware.
The first problem was caused because logic implemented in
a memory process typically was several generations behind
contemporary logic processes in terms of performance. The
process problem led to either slow-performing processors or
highly specialized PIM solutions geared only towards specific
operations, limiting their applicability. The second problem
of programmability emerged because PIM is not easy for de-
velopers to understand and reason about in the context of their
programs. Developers generally are not used to thinking about
allocating into different physical memories and coordinating
execution corresponding to their data location. Past research
on PIM programmability largely focused on compiler tech-
niques or low-level APIs to extract code for execution [4][7].

Figure 1: Example compute node design with PIM

While these techniques also abstract away the architectural de-
tails, we believe higher-level, library-based abstractions using
common data structures and algorithms will increase the adop-
tion of PIM greatly by improving ease of programmability,
portability, and the range of supported applications.

Only recently have process technology advancements im-
proved to the point at which solving the first problem is
now a possibility. By using 3D die-stacking techniques, pro-
grammable processors implemented in a logic process can be
coupled with memories implemented in a memory process
using through-silicon vias. These processors can be fully pro-
grammable CPUs and GPUs or other types of accelerators.
An example of such a PIM system is shown in Figure 1. PIM
logic sits below each memory stack associated with a host
processor [9].

While solutions to the process technology that would enable
the ability to building a fully programmable PIM system are
now visible on the horizon, the programmability questions
of how to coordinate and execute work with a PIM architec-
ture still remain. This paper focuses on the software side of
PIM: how we can improve the programmability aspects and
gain traction with developers to increase the adoption of PIM.
With parallel programming and GPGPU techniques now com-
mon, many of the basic parallelization concepts needed for
PIM abstractions are well understood by the software devel-
opment community. Thus, we advocate for development of
high-level programming models to abstract away the low-level
architecture details and make the underlying PIM effectively
transparent to developers. We propose data structures and al-
gorithms that are fully PIM-aware, and automatically partition
them across a PIM system by default, with options allowing
expert developers the freedom to fine-tune and optimize their
code for increased performance or better energy efficiency.

2. Low-level APIs for PIM

While this paper focuses on the development of high-level
programming models for PIM, it assumes a basic set of low-

level APIs that would be necessary to interact with a PIM
architecture.

Three basic APIs for PIM can allow for development of a
significant amount of high-level abstractions: PIM device dis-
covery, memory allocation/deallocation, and PIM computation
launch. Device discovery includes determining the number
and querying the capabilities of each PIM processor. Memory
allocation requires APIs similar to malloc() and free() to al-
locate and deallocate on a specific memory. A launch method
is necessary to execute computation on the PIM processor.

3. High-level Programming Models for PIM
From a developer’s standpoint, the main difficulties in pro-
gramming for a PIM system are deciding how to partition the
data across the memories and, once partitioned, how to coor-
dinate the execution of tasks on their respective data. Both of
these decisions are non-trivial and can change drastically the
performance and correctness of a program. In many ways, a
current high-level programming model for distributed systems
such as MPI can map well; however, MPI is targeted towards
systems with much more expensive communication, whereas
a PIM system is more tightly coupled with lighter-weight
communication. Programming models such as OpenMP and
OpenACC are much more similar. This paper is not suggest-
ing an alternative to these models, but is advocating ideas and
directions for possible incorporation into future versions.

This section provides an example of a C++ template-based
solution that is cognizant of the underlying PIM hardware. The
basic principles behind this design are to make sensible de-
faults, so a non-expert programmer can benefit from PIM, and
to be robust enough to allow domain experts who understand
the architecture to optimize their code.

3.1. PIM Device Discovery

The first step in programming for a PIM-enabled system is
device discovery. A programmer needs to be able to query
the number and capabilities of the available PIMs. Device
discovery is important for PIM software development for code
portability towards systems with differing PIM capabilities or
even legacy systems with no PIM at all.

c l a s s p i m _ in f o {
p u b l i c :

p i m _ in f o () ;
~ p i m _ i n f o () ;

vo id i n i t i a l i z e (p i m _ d e v i c e _ t y p e d e v i c e _ t y p e ,
u i n t 3 2 _ t n u m _ e n t r i e s = UINT_MAX) ;

vo id push (p i m _ d e v i c e _ i d & i d) ;
u i n t 3 2 _ t s i z e () ;
p i m _ d e v i c e _ i d ∗ l i s t _ o f _ p i m s () ;
p i m _ d e v i c e _ i d& o p e r a t o r [] (i n t i n d e x) ;

}

Listing 1: A PIM info class to capture PIM devices

Listing 1 shows a class that can encapsulate this information.
The pim_info class defaults to initialize all the available PIM
devices in the system, but can be modified easily to include

Figure 2: Various array declarations and how their indices would be
mapped to the a machine with four PIMs.

only a subset of the PIM devices based on capabilities using
the initialize() method.

This pim_info class can be used as an argument across the
PIM data structure constructors and algorithms to specify on
which PIM devices to execute. However, in keeping with the
principle to have sensible defaults to improve ease of program-
ming, all constructors and algorithms allow the absence of the
pim_info declaration. When not specified, the programming
model defaults to using all PIMs in the system.

3.2. PIM-aware Data Structures

The next major issue is the partitioning of data across different
memories cognizant of the associated PIM memories. We
believe that enabling PIM-aware partitioning in familiar data
structures is an excellent method to introduce the benefits of
PIM to developers.

A basic multi-dimensional array class is presented in List-
ing 2. This class uses the pim_info class argument to define
which PIMs to partition the data across. A pim_layout ar-
gument allows the array to be evenly partitioned across each
PIM, or in a blocked fashion with a specific chunk size per
PIM. Otherwise, the array can be used as expected like any
other C++ array. The PIM array class uses the low-level PIM
API to allocate memory and keeps track of which array indices
are mapped to which separate PIM memory. Figure 2 shows
how the PIM array is allocated to the PIM memories given
various options available. These different options can give
the programmer more fine-grain control over where data is
placed based on capabilities of the underlying PIM or access
characteristics of their code.

t e m p l a t e < typename T , i n t N=1>
c l a s s a r r a y {
p u b l i c :

a r r a y (i n t s i z e , p i m _ i n f o& i n f o = d e f a u l t _ i n f o ,
p i m _ l a y o u t& l a y o u t = d e f a u l t _ l a y o u t) ;

a r r a y (e x t e n t <N>& ext , p i m _ i n f o& i n f o = d e f a u l t _ i n f o ,
p i m _ l a y o u t& l a y o u t = d e f a u l t _ l a y o u t) ;

~ a r r a y () ;
T& o p e r a t o r [] (i n t i n d e x) ;
s i z e _ t p im_id (i n t i n d e x) ;
s i z e _ t s i z e () ;

}

Listing 2: A PIM-aware array class

2

3.3. Coordination of PIM execution

The final challenge for a PIM programmer is the launching and
coordination of tasks on individual PIM processors. For best
performance and energy efficiency, computation should spawn
on the processor corresponding to the data being processed.

Launching work on the PIM processors require two steps
from the programmer: specifying the function to execute
and initializing the execution. Listing 3 shows an example
pim_function class that is the abstract base class for PIM
computation. This class has one pure virtual function, run(int
index), which is overridden to provide an implementation for
what needs to execute per element within a data structure.

c l a s s p i m _ f u n c t i o n
{
p u b l i c :

v i r t u a l vo id run (i n t i n d e x) = 0 ;
} ;

Listing 3: A PIM function abstract class

Once the computation function has been specified, it needs
to be launched. A parallel_for_each algorithm was cho-
sen because it is an easily understood concept among pro-
grammers and common in both parallel and GPGPU program-
ming domains. The parallel_for_each algorithm is shown
in Listing 4. There are two input arguments to the paral-
lel_for_each: an array, which specifies the domain to iterate
over, and the kernel to execute.

t e m p l a t e < typename T , i n t N, typename Func >
vo id p a r a l l e l _ f o r _ e a c h (a r r a y <T , N> &domain , Func f ,

p a r a l l e l _ o p t i o n s o p t =PER_PIM) ;

Listing 4: A PIM-aware parallel_for method

By default, the parallel_for_each algorithm spawns a sin-
gle thread per PIM device on the machine, and each thread
executes the run() function on every element of the array
associated with that PIM’s memory. By using the paral-
lel_options argument, however, a programmer can change
this to spawn a separate thread for each element in the array
using a PER_ELEMENT parallel_options. The paral-
lel_for_each is currently blocking and thus the host waits
at the end of its call for all computations launched to com-
plete. Additional investigation into barriers and synchroniza-
tion could lead to other models of host/PIM interaction such
as asynchronous spawns.

3.4. Example

Listing 5 shows an example of how this programming model
could be used to specify a kernel, create data across a PIM-
enabled architecture, and launch the kernels accordingly. The
process_func class defines the kernel for execution. It spec-
ifies that each element of the array should be input into the
process() method and written to an output array. The main
function then simply needs to create the input and output
arrays, initialize the input, and call parallel_for_each.

c l a s s p r o c e s s _ f u n c : p u b l i c PIM : : p i m _ f u n c t i o n {
p u b l i c :

p r o c e s s _ f u n c (PIM : : a r r a y <foo > &i n p u t ,
PIM : : a r r a y <foo > &o u t p u t) :

i n (i n p u t) ,
o u t (o u t p u t) { }

v i r t u a l vo id run (i n t i) {
o u t [i] = p r o c e s s (i n [i])

}

PIM : : a r r a y <foo >& i n ;
PIM : : a r r a y <foo >& o u t ;

} ;

i n t main () {
PIM : : a r r a y <foo > i n (5 1 2) ;
PIM : : a r r a y <foo > o u t (5 1 2) ;
i n i t i a l i z e (i n) ;

PIM : : p a r a l l e l _ f o r _ e a c h (in , p r o c e s s _ f u n c (in , o u t)) ;
}

Listing 5: Example use of the PIM high-level model

The high-level model abstracts away the PIM concepts for
the programmer; each array is partitioned automatically across
the available PIM memories, and the parallel_for_each sim-
ply launches the kernel across each of the PIM devices. This
was chosen as the default method of partitioning because it
is the easiest concept to understand and the most commonly
used. However, if programmers had specific knowledge of
their algorithm or data mapping, they could fine-tune this pro-
gram in many ways. For example, a pim_info could specify
only PIM devices with certain capabilities and pass that to the
array constructor. The parallel_for_each then would launch
only on those devices.

4. Future directions
There are many directions to continue this research of PIM-
aware high-level models. This prototype was intended as a
study of the viability of high-level programming constructs
mapping to a low-level PIM API. More sophisticated data
structures and algorithms need to be investigated. An array
maps fairly easily because its memory generally is contiguous
and can be partitioned logically across different memories.
How this translates to hashes, trees, or other common irregular
data structures remains to be studied. For example, a tree could
have an edge- or vertex-based partitioning, but how these work
in practice remains to be studied.

Another area of additional study in raising the level of PIM
abstractions is in algorithms. A parallel_for_each method
maps over to PIM in a straightforward manner; other algo-
rithms like reduce, shuffle, or search need investigation. We
envision that many of these can fit into a library that supports
common algorithms for PIM.

Another necessary area for future study is PIM-aware syn-
chronization and barriers. The current method, shown in this
paper, waits at the end of a parallel_for_each for all the
threads to complete. The addition of synchronization primi-
tives could allow for an asynchronous launch and a significant

3

amount of overlap between host and PIM execution.
The final major area for additional study lies with runtime

scheduling for PIM. The model shown in this paper is very
programmer-centric when it comes to the scheduling of work
by the parallel_for_each method. A more robust system
could include a runtime to handle scheduling of work and
management of work and data locations. Such a runtime could
allow for the execution of irregular task workloads and open
up PIM to many new applications.

5. Conclusions
This paper presents a case for research of PIM-aware high-
level programming models. As process technology techniques
begin to solve issues with poor-performing hardware, research
into the software stack can help drive adoption of the archi-
tecture. High-level abstractions of underlying hardware us-
ing common data structures and algorithms are possible with
only a simple set of low-level APIs for querying PIM de-
vices, allocating memory and launching tasks. While this
paper shows the start of developing a PIM-oriented high-level
model, a significant amount of investigation still lies in data
structures, PIM-enabled algorithms and synchronization and
runtime scheduling to help raise the abstraction of and lower
the barriers to entry for, PIM.

References
[1] D. G. Elliott, M. Stumm, W. M. Snelgrove, C. Cojocaru, and R. McKenzie. Com-

putational RAM: Implementing processors in memory. IEEE Design & Test of
Computers, 16(1):32–41, 1999.

[2] B. R. Gaeke, P. Husbands, X. S. Li, L. Oliker, K. A. Yelick, and R. Biswas.
Memory-intensive benchmarks: IRAM vs. cache-based machines. In Interna-
tional Parallel & Distributed Processing Symposium, 2002.

[3] M. Gokhale, W. Holmes, and K. Iobst. Processing in memory: The Terasys mas-
sively parallel PIM array. IEEE Computer, 28(4):23–31, 1995.

[4] M. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame, J. Draper, and J. Lacoss. Map-
ping irregular applications to DIVA, a PIM-based data-intensive architecture. In
Supercomputing, 1999.

[5] Y. Kang, M. W. Huang, W. Huang, S. Yoo, Z. Ge, V. Lam, D. Keen, Z. Ce, V. Lain,
P. Pattnaik, and J. Torrellas. FlexRAM: Toward an advanced intelligent memory
system. In IEEE International Conference on Computer Design, pages 192–201,
1999.

[6] P. M. Kogge, J. B. Brockman, T. Sterling, and G. Gao. Processing in memory:
Chips to petaflops. In Workshop on Mixing Logic and DRAM: Chips that Compute
and Remember at ISCA ’97, 1997.

[7] J. Lee, Y. Solihin, and J. Torrellas. Automatically mapping code on an intelligent
memory architecture. In IEEE International Symposium on High Performance
Computer Architecture, pages 121–132, 2001.

[8] M. Oskin, F. T. Chong, and T. Sherwood. Active pages: a computation model
for intelligent memory. In ACM/IEEE International Symposium on Computer
Architecture, pages 192–203, 1998.

[9] D. P. Zhang, N. Jayasena, A. Lyashevsky, J. Greathouse, M. Meswani, M. Nutter,
and M. Ignatowski. A new perspective on processing-in-memory architecture
design. In Workshop on Memory Systems Performance and Correctness, 2013.

4

	Introduction
	Low-level APIs for PIM
	High-level Programming Models for PIM
	PIM Device Discovery
	PIM-aware Data Structures
	Coordination of PIM execution
	Example

	Future directions
	Conclusions

